• Title/Summary/Keyword: Resistance pattern

Search Result 869, Processing Time 0.024 seconds

Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates (임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학)

  • Choi, Myung-Won
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1268-1276
    • /
    • 2012
  • The emergence and dissemination of carbapenem-resistant bacteria have resulted in limitations of antibiotic treatment and potential outbreaks of metallo-${\beta}$-lactamase (MBL) producing Pseudomonas aeruginosa resistant to carbapenems. In this study, we conducted molecular characterization of the MBL genes of the ${\beta}$-lactam drug-resistant P. aeruginosa and prepared basic data for treatment and prevention of proliferation of antimicrobial-resistant bacterial infections. Forty-two P. aeruginosa isolates of 254 were resistant to imipenem or meropenem. Among the 42 isolates, 28 isolates were positive for the Hodge test, and 23 isolates were positive for the EDTA-disk synergy test (EDST). MBLs were detected in 59.5% (25/42) of P. aeruginosa isolates. Eight isolates harbored $bla_{IMP-6}$, whereas 17 isolates harbored $bla_{VIM-2}$. The $bla_{IMP-6}$ gene was in a class 1 integron containing five gene cassettes: $bla_{IMP-6}$, qac, aacA4, $bla_{OXA-1}$, and aadA1. Some strains that produce IMP-6 and VIM-2 showed epidemiological relationships. The $bla_{IMP-6}$ gene in carbapenem-resistant P. aeruginosa showed an identical pattern to a gene cassette that was reported at a hospital in Daegu, Korea. Therefore, MBL-producing P. aeruginosa is already endemic in the community. We are concerned that the existence of carbapenem-resistant bacteria containing the blaMBL gene may increase pressure on antibiotic selection when treating infections. We believe that we should select appropriate antibiotics based on the antibiotic susceptibility test and continue the research to prohibit the emergence and spread of antibiotics resistant bacteria.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Identification of the Protein Function and Comparison of the Protein Expression Patterns of Wheat Addition Lines with Wild Rye Chromosomes (야생 호밀 염색체 첨가 밀 계통의 단백질 발현 양상 비교 분석)

  • Lee, Dae Han;Cho, Kun;Woo, Sun Hee;Cho, Seong-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.373-383
    • /
    • 2019
  • The objectives of this study were to compare the protein expression patterns and degrees and identify the protein function of disomic addition lines (DAs) in Leymus racemosus, in order to improve the quality of wheat. Upon SDS-PAGE, L. racemosus showed two major protein bands whereas Chinese Spring (CS) had four major protein bands of high molecular weight. The DA(s) generally showed a similar protein expression pattern to that of CS, because 42 chromosomes were from CS and two chromosomes were from L. racemosus. However, only the L.r[J] line showed two protein bands of between 15 and 20 kDa, like L. racemosus. Image analysis based on 2-DE revealed that L.r[F] had the most upregulated protein spots, whereas L.r[N] had the least upregulated protein spots. For L.r[I], the frequency of the downregulated protein spots was higher than that of the upregulated ones. Using MALDI-TOF MS, the protein function was identified for each protein spot on the 2-DE polyacrylamide gel. The protein spots were classified into 11 groups according to protein function. Among the 11 groups, most protein spots of the DA(s) were identified as proteins related to metabolism. Additionally, unique protein spots of the DA(s) were related to abiotic stressors such as cold and heat. Those proteins are useful for improving wheat quality with resistance against abiotic stressors.

Biofilm Formation and Low pH Viability of Cronobacter spp. (Enterobacter sakazakii) Isolated from Powdered Infant Formula and Infant Foods in Korea (국내 분유 및 영.유아식품에서 분리된 Cronobacter spp. (Enterobacter sakazakii)의 Biofilm 생성 특성 및 내산성 비교)

  • Kim, Sun-Ae;Lee, Yu-Mi;Oh, Se-Wook;Gwak, Hyo-Sun;Hwang, In-Gyun;Kang, Dong-Hyun;Woo, Gun-Jo;Rhee, Min-Suk
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.702-708
    • /
    • 2009
  • We investigated biofilm formation in various media, growth in low pH, and the hemolytic activity of 14 strains of Cronobacter spp. (Enterobacter sakazakii) isolated from a variety of foods including powdered infant formula (n=75), infant cereal (n=100), honey (n=30), and other infant foods (n=100) in Korea. The Cronobacter spp. adhered and formed biofilms on polyethylene, and a greater extent of biofilm was observed in nutrient-rich media. No clear difference in biofilm-forming ability was noted among the media constituents and the pattern of biofilm formation was strain-dependent. Seven strains out of 14 strains (50%) grew at pH 4.1, indicating that the acid resistance of these Cronobacter spp. isolated in Korea was relatively low. Hemolytic activity was not observed in any of the strains. This study provides basic information for the physiological and biochemical characteristics of Cronobacter spp. isolated from a variety of infant foods in Korea.

Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly (유연 반도체 패키지 접속을 위한 폴리머 탄성범프 범핑 공정 개발 및 범프 변형 거동 분석)

  • Lee, Jae Hak;Song, Jun-Yeob;Kim, Seung Man;Kim, Yong Jin;Park, Ah-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.2
    • /
    • pp.31-43
    • /
    • 2019
  • In this study, polymer elastic bumps were fabricated for the flexible electronic package flip chip bonding and the viscoelastic and viscoplastic behavior of the polymer elastic bumps according to the temperature and load were analyzed using FEM and experiments. The polymer elastic bump is easy to deform by the bonding load, and it is confirmed that the bump height flatness problem is easily compensated and the stress concentration on thin chip is reduced remarkably. We also develop a spiral cap type and spoke cap type polymer elastic bump of $200{\mu}m$ diameter to complement Au metal cap crack phenomenon caused by excessive deformation of polymer elastic bump. The proposed polymer elastic bumps could reduce stress of metal wiring during bump deformation compared to metal cap bump, which is completely covered with metal wiring because the metal wiring on these bumps is partially patterned and easily deformable pattern. The spoke cap bump shows the lowest stress concentration in the metal wiring while maintaining the low contact resistance because the contact area between bump and pad was wider than that of the spiral cap bump.

Analysis and cause of defects in reinforced cement concrete lining on NATM tunnel based on the Precise Inspection for Safety and Diagnosis - Part I (정밀안전진단 결과를 활용한 NATM (철근)의 라이닝 결함 종류별 발생원인 및 분석 - Part I)

  • Choo, Jinho;Lee, Inmo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.1-29
    • /
    • 2019
  • Related to the previous paper on the typical crack pattern of tunnel lining with NATM, the characteristic defects in reinforced cement concrete lining of NATM tunnel have analyzed with the precise inspection with safety and diagnosis (PISD) by KISTEC. Depending on the reinforcing materials, steel rebar, steel fiber, and glass fiber have been implemented to reinforcing lining in various NATM tunnel constructions. Reinforcing lining with rebar are prevailed on NATM tunnel to countermeasure the weak geological circumstances, to pursuit the economical tunnel sections, and to resist the risk of tunnel deterioration. By the special act on the safety control of public facilities, the reinforced NATM tunnels for more than 1 km length are scrutinized closely to characterize defects; crack, reinforcement exposure, and lack of lining. Crack resistance by reinforcing is shown in comparison with the normalized crack to the length of tunnel. Typical exposed reinforcements in lining have exemplified with various sections. The lack of lining due to the mal-construction, spalling, fire, earthquake and leaching has been analyzed. The cause and mechanism with the field inspections and other studies has also been verified. Detailed cases are selected by the above concerns as well as the basic information from FMS (Facilities Management System). Likewise the previous paper, this study provides specialized defects in reinforced lining of NATM and it can be widely used in spreading the essential technics and reporting skills. Furthermore, it would be advised and amended for the detail guideline of Safety Diagnosis and PISD (tunnel).

Can Hinokitiol Kill Cancer Cells? Alternative Therapeutic Anticancer Agent via Autophagy and Apoptosis (Hinokitiol에 의해 유도된 Autophagy 및 Apoptosis에 의한 대체 항암요법 연구)

  • Lee, Tae Bok;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Cancer is genetically, metabolically and infectiously induced life threatening disorder showing aggressive growing pattern with invasive tendency. In order to prevent this global menace from jeopardizing human life, enormous studies on carcinogenesis and treatment for chemotherapy resistance have been intensively researched. Hinokitiol (${\beta}$-thujaplicin) extracted from heart wood of cupressaceous is a well-known bioactive compound demonstrating anti-inflammation, anti-bacteria and anti-cancer effects on several cancer types via apoptosis and autophagy. This study proposed that hinokitiol activates transcription factor EB (TFEB) nuclear translocation for autophagy and lysosomal biogenesis regardless of nutrient condition in cancer cells. Mitophagy and ${\beta}$-catenin translocation into the nucleus under treatment of hinokitiol on non-small cell lung cancer (NSCLC) cells and HeLa cells were investigated. Hinokitiol exerted cytotoxicity on HeLa and HCC827 cells; moreover, artificially induced autophagy by overexpression of TFEB granted imperfect sustainability onto HeLa cells. Taken together, hinokitiol is the prominent autophagy inducer and activator of TFEB nuclear translocation. Alternative cancer therapy via autophagy is pros and cons since the autophagy in cancer cells is related to prevention and survival mechanism depending on nutrition. To avoid paradox of autophagy in cancer therapy, fine-tuned regulation and application of hinokitiol in due course for successful suppressing cancer cells are recommended.

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.