• Title/Summary/Keyword: Resistance Moment

Search Result 462, Processing Time 0.029 seconds

COLLAPSE PRESSURE ESTIMATES AND THE APPLICATION OF A PARTIAL SAFETY FACTOR TO CYLINDERS SUBJECTED TO EXTERNAL PRESSURE

  • Yoo, Yeon-Sik;Huh, Nam-Su;Choi, Suhn;Kim, Tae-Wan;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.450-459
    • /
    • 2010
  • The present paper investigates the collapse pressure of cylinders with intermediate thickness subjected to external pressure based on detailed elastic-plastic finite element (FE) analyses. The effect of the initial ovality of the tube on the collapse pressure was explicitly considered in the FE analyses. Based on the present FE results, the analytical yield locus, considering the interaction between the plastic collapse and local instability due to initial ovality, was also proposed. The collapse pressure values based on the proposed yield locus agree well with the present FE results; thus, the validity of the proposed yield locus for the thickness range of interest was verified. Moreover, the partial safety factor concept based on the structural reliability theory was also applied to the proposed collapse pressure estimation model, and, thus, the priority of importance of respective parameter constituting for the collapse of cylinders under external pressure was estimated in this study. From the application of the partial safety factor concept, the yield strength was concluded to be the most sensitive, and the initial ovality of tube was not so effective in the proposed collapse pressure estimation model. The present deterministic and probabilistic results are expected to be utilized in the design and maintenance of cylinders subjected to external pressure with initial ovality, such as the once-through type steam generator.

Safety Evaluation of the Precast Half Deck Pannel Joints Reinforced by Connection Rebar (이음철근이 보강된 반단면 프리캐스트 판넬 이음부의 강도 안전성 평가)

  • Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.40-47
    • /
    • 2019
  • The Half-depth precast deck is a structural system that utilizes pre-cast panels pre-built at the factory as formwork at the construction stage and as a major structural member at the same time after completion. These systems have joints between segments, and the detail and performance of the joints are factors that have a very large impact on the quality, such as the constructability and durability of the bridge decks. In this study, strength performance evaluation was performed for improved joints using connecting rebar by experimental method. Static loading tests were conducted on the test specimen with improved joint, those with existing joint and those without joint. The test results of the specimens were compared to each other, and the flexural strength required by the design was compared. The flexural strength required in the design was presented by finite element analysis. It has been shown that the flexural strength of the specimens with joints were more than twice that required by the design. But the flexural strength of the specimen with existing joint was about 84% of that without joint. The flexural strength of the specimen with improved joints was a nearly similar degree of that compared to the specimen without joint. And a comparison of the moment-deflection relationship curves of the two specimens also shows a very similar flexural behavior. It is confirmed that improved joint has sufficient flexural strength. In addition to strength, the bridge decks require serviceability, such as deflection and cracking, and in particular, fatigue resistance due to repetitive live loads is an important performance factor. Therefore, further verification studies are required.

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

Function and Meaning of Color Gray in Korean Films : Memory and Oblivion (한국영화에 표현된 회색의 기능과 의미 : 기억과 망각)

  • Kim, Jong-Guk
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.3
    • /
    • pp.77-87
    • /
    • 2021
  • The color gray in the cinema expresses the private or public memory and oblivion in the reminiscence scenes. The aesthetic function and meaning of gray that interacts with other elements in cinematic time and space are expanded in various ways. This study was analyzed the cases in which gray was used as the main visual style by limiting the scope to Korean films. Based on the traditional cultural symbolic meaning of gray, I analyzed how it was applied and transformed in films, and interpreted the cultural-social meaning by the interaction between gray and other elements. In film history starting from monochrome, gray has been used as a visual device suitable for realizing cinematic or imaginary reality. Gray is adopted when dreams or recollections are visualized as imaginary reality, and it is used when dreamy imaginations of daydreaming are demonstrated. Gray, which reproduces the dreamlike reality of imagination, is the concrete and realistic way of expression. First, in Korean films, gray is a flashback visual device that recalls the past, and is an intermediary visual form that materializes the imaginary. In films such as Ode to My Father (2014), DongJu (2015), A Resistance(2019) and The Battle : Roar to Victory (2019), the gray of the past is a visual device for cultural memory that builds the homogeneity and identity of the group. In the era of hyper-visibility, gray in black and white images is intended to be clearly remembered by unfamiliarity rather than blurry oblivion by familiarity. Second, in genre films with disaster materials such as Train To Busan (2016) and Ashfall (2019), the grays of rain, fog, clouds, shadows and smoke highlight other elements, and the gray color causes anxiety and fear. In war films such as TaeGukGi: Brotherhood Of War (2003) and The Front Line (2011), gray shows a more intense brutality than the primary color. In sports films such as 4th Place (2015), Take Off (2009) and Forever The Moment (2007), gray expresses uncertainty and immaturity. Third, gray visualizes the historical memory of A Petal (1996), the oblivion in Oh! My Gran (2020) and Poetry (2010), and the reality of daydreaming Gagman (1988) and Dream (1990). At the boundary between imagination and reality, gray is a visual form of dreams, memories and forgetfulness.

Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation

  • Mohammadzadeh, Behzad;Kang, Junsuk
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.65-80
    • /
    • 2021
  • Irregularities of a building in plan and elevation, which results in the change in stiffness on different floors highly affect the seismic performance and resistance of a structure. This study motivated to investigate the seismic responses of high-rise steel-frame buildings of twelve stories with various stiffness irregularities. The building has five spans of 3200 mm distance in both X- and Z-directions in the plan. The design package SAP2000 was adopted for the design of beams and columns and resulted in the profile IPE500 for the beams of all floors and box sections for columns. The column cross-section dimensions vary concerning the number of the story; one to three: 0.50×0.50×0.05m, four to seven: 0.45×0.45×0.05 m, and eight to twelve: 0.40×0.40×0.05 m. Real recorded ground accelerations obtained from the Vrancea earthquake in Romania together with dead and live loads corresponding to each story were considered for the applied load. The model was validated by comparing the results of the current method and literature considering a three-bay steel moment-resisting frame of eight-story height subject to seismic load. To investigate the seismic performance of the buildings, the time-history analysis was performed using ABAQUS. Deformed shapes corresponding to negative and positive peaks were provided followed by the story drifts and fragility curves which were used to examine the probability of collapse of the building. From the results, it was concluded that regular buildings provided a seismic performance much better than irregular buildings. Furthermore, it was observed that building with torsional irregularity was more vulnerable to seismic failure.

Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads (보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석)

  • Chakraborty, Sudipta;Islam, Md. Rajibul;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.10-19
    • /
    • 2022
  • Irregularity in structural shape is a ubiquitous phenomenon. Structural hazards evoked from irregularity need to be checked against extreme lateral loadings. Structures containing four distinct types of irregularities in terms of continuity and discontinuity in upper half-length and all story levels along with O-shape are investigated. The structures were analyzed numerically and different seismic responses such as displacements, bending moment, axial forces, torsions, story drift, etc. were scrutinized. The seismic and wind load analysis was conducted for ACI 318-11 conditions. Results show that buildings having discontinuous beams on the upper half exhibit better resilience. It is also concluded that O-shaped building structures provide better resistance to overturning, making this shape relatively safe.

Developing girder distribution factors in bridge analysis through B-WIM measurements: An empirical study

  • Widi Nugraha;Winarputro Adi Riyono;Indra Djati Sidi;Made Suarjana;Ediansjah Zulkifli
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.207-220
    • /
    • 2023
  • The safety of bridges are critical in our transportation infrastructure. Bridge design and analysis require complex structural analysis procedures to ensure their safety and stability. One common method is to calculate the maximum moment in the girders to determine the appropriate bridge section. Girder distribution factors (GDFs) provide a simpler approach for performing this analysis. A GDF is a ratio between the response of a single girder and the total response of all girders in the bridge. This paper explores the significance of GDFs in bridge analysis and design, including their importance in the evaluation of existing bridges. We utilized Bridge Weigh-in-motion (B-WIM) measurements of five simple supported girder bridge in Indonesia to develop a simple GDF provisions for the Indonesia's bridge design code. The B-WIM measurements enable us to know each girder strain as a response due to vehicle loading as the vehicle passes the bridge. The calculated GDF obtained from the B-WIM measurements were compared with the code-specified GDF and the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) bridge design specification. Our study found that the code specified GDF was adequate or conservative compared to the GDF obtained from the B-WIM measurements. The proposed GDF equation correlates well with the AASHTO LRFD bridge design specification. Developing appropriate provisions for GDFs in Indonesian bridge design codes can provides a practical solution for designing girder bridges in Indonesia, ensuring safety while allowing for easier calculations and assessments based on B-WIM measurements.

An Investigation of Reliability and Safety Factors in RC Flexural Members Designed by Current WSD Standard Code (현행(現行) 허용응력설계법(許容應力設計法)으로 설계(設計)되는 RC 휨부재(部材)의 신뢰성(信賴性)과 안전율(安全率) 고찰(考察))

  • Shin, Hyun Mook;Cho, Hyo Nam;Chung, Hwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.33-42
    • /
    • 1981
  • Current standard code for R.C. design consists of two conventional design parts, so called WSD and USD, which are based on ACI 318-63 and 318-71 code provisions. The safety factors of our WSD and USD design criteria which are taken primarily from ACI 318-63 code are considered to be not appropriate compared to out country's design and construction practices. Furthermore, even the ACI safety factors are not determined from probabilistic study but merely from experiences and practices. This study investigates the safety level of R.C. flexural members designed by the current WSD safety provisions based on Second Moment Reliability theory, and proposes a rational but efficient way of determining the nominal safety factors and the associated flexural allowable stresses of steel bars and concretes in order to provide a consistent level of target reliability. Cornell's Mean First-Order Second Moment Method formulae by a log normal transformation of resistance and load output variables are adopted as the reliability analysis method for this study. The compressive allowable stress formulae are derived by a unique approach in which the balanced steel ratios of the resulting design are chosen to be the corresponding under-reinforced sections designed by strength design method with an optimum reinforcing ratio. The target reliability index for the safety provisions are considered to be ${\beta}=4$ that is well suited for our level of construction and design practices. From a series of numerical applications to investigate the safety and reliability of R.C. flexural members designed by current WSD code, it has been found that the design based on WSD provision results in uneconomical design because of unusual and inconsistent reliability. A rational set of reliability based safety factors and allowable stress of steel bars and concrete for flexural members is proposed by providing the appropriate target reliability ${\beta}=4$.

  • PDF

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.