References
- Ajamy, A., Asgarian, B., Ventura, C.E. and Zolfaghari, M.R. (2018), "Seismic fragility analysis of jacket type offshore platforms considering soil-pile-structure interaction", Eng. Struct., 174, 198-211. https://doi.org/10.1016/j.engstruct.2018.07.066.
- Altunisik, A.C. and Kalkan, E. (2016), "Investigation of earthquake angle effect on the seismic performance of steel bridges", Steel Compos. Struct., 23(4), 855-874. https://doi.org/10.12989/scs.2016.22.4.855.
- Benavent-Climent, A., Morillas, L. and Escolano-Margarit, D. (2014), "Inelastic torsional seismic response of nominally symmetric reinforced concrete frame structures: Shaking table tests", Eng. Struct., 80, 109-117. https://doi.org/10.1016/j.engstruct.2014.08.047.
- Bojorquez, E. and Iervolino, I. (2011), "Spectral shape proxies and nonlinear structural response", Soil Dynam. Earthq. Eng., 31, 996-1008. https://doi:10.1016/j.soildyn.2011.03.006.
- Cancellara, D. and De Angelis, F. (2019), "Dynamic assessment of base isolation systems for irregular in plan structures: Response spectrum analysis vs nonlinear analysis", Compos. Struct., 215, 98-115. https://doi.org/10.1016/j.compstruct.2019.02.013.
- Choi, E., Mohammadzadeh, B., Kim, D. and Jeon, J.S. (2018), "A new experimental investigation into the effects of reinforcing mortar beams with superelastic SMA fibers on controlling and closing cracks", Compos. Part B: Eng., 137, 140-152. https://doi.org/10.1016/j.compositesb.2017.11.017.
- Choi, E., Mohammadzadeh, B., Hwang, J.H. and Kim, W.J. (2018), "Pullout behavior of superelastic SMA fibers with various endshapes embedded in cement mortar", Constr. Build. Mater., 167, 605-616. https://doi.org/10.1016/j.conbuildmat.2018.02.070.
- Choi, E., Mohammadzadeh, B., Hwang, J.H. and Lee, J.H. (2019), "Displacement-recovery-capacity of superelastic SMA fibers reinforced cementitious materials", Smart Struct. Syst., 24(2), 157-171. https://doi.org/10.12989/sss.2019.24.2.157.
- Choi, E., Chae, S.W., Park, H., Nam, T.H., Mohammadzadeh, B. and Hwang, J.H. (2018), "Investigating self-centering capacity of superelastic shape memory alloy fibers with different anchorages through pullout tests", J. Nanosci. Nanotechnol., 18, 6228-6232. https://doi:10.1166/jnn.2018.15635.
- Choi, E., Mohammadzadeh, B. and Kim, H.S. (2019), "SMA bending bars as self-centering and damping devices", Smart Mater. Struct., 28, 025029. https://doi.org/10.1088/1361-665X/aaf5e3.
- Chung, K.F., Ko, C.H. and Wang, A.J. (2005), "Design of steel and composite beams with web openings-Verification using finite element method", Steel Compos. Struct., 5(2), 203-233. https://doi.org/10.12989/scs.2005.5.2_3.203.
- Dasgupta, B. (2017), "Evaluation of methods used to calculate seismic fragility curves", U.S. Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML1712/ML17122A268.
- Davani, M.R., Hatami, S. and Zare, A. (2016), "Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis", Steel Compos. Struct., 21(6), 1369-1388. http://dx.doi.org/10.12989/scs.2016.21.6.1369.
- Dya, A.F.C. and Oretaa, A.W.C. (2015), "Seismic vulnerability assessment of soft story irregular buildings using pushover analysis", Procedia Eng., 125, 925-932. https://doi.org/10.1016/j.proeng.2015.11.103
- Georgoussis, G., Tsompanos, A. and Makarios, T. (2015), "Approximate seismic analysis of multi-story buildings with mass and stiffness irregularities", Procedia Eng., 125, 959-966. https://doi.org/10.1016/j.proeng.2015.11.147.
- HAZUS, (1999), "Earthquake loss estimation methodology-Technical manual", Federal Emergency Management Agency and National Institute of Building Science. http://www.fema.gov/plan/prevent/hazus.
- Hoffman, S.T. and Fahnestock, L.A. (2011), "Behavior of multi-story steel buildings under dynamic column loss scenarios", Steel Compos. Struct., 11(2), 149-168. https://doi.org/10.12989/scs.2011.11.2.149.
- Hou, W., Xu, S., Ji, D., Li, Q. and Zhang, P. (2019), "Seismic performance of steel plate reinforced high toughness concrete coupling beams with different steel plate ratios", Compos. Part B: Eng., 159, 199-210. https://doi.org/10.1016/j.compositesb.2018.09.100.
- Hsu, H.L., Juang, J.L. and Chou, C.H. (2011), "Experimental evaluation on the seismic performance of steel knee braced frame structures with energy dissipation mechanism", Steel Compos. Struct., 11(1), 77-91. http://dx.doi.org/10.12989/scs.2011.11.1.077.
- Kim, S. and Lee, K. (2013), "Seismic performance of wind-designed diagrid tall steel buildings in regions of moderate seismicity and strong wind", Steel Compos. Struct., 14(2), 155-171. http://dx.doi.org/10.12989/scs.2013.14.2.155.
- Kircil, M.S. and Polat, Z. (2006), "Fragility analysis of mid-rise R/C frame buildings", Eng. Struct., 28, 1335-1345. http://doi:10.1016/j.engstruct.2006.01.004.
- Lee, D., Ha, T., Jung, M. and Kim, J. (2014), "Evaluating high performance steel tube-framed diagrid for high-rise buildings", Steel Compos. Struct., 16(3), 289-303. http://dx.doi.org/10.12989/scs.2014.16.3.289.
- Li, S., Zuo, Z., Zhai, C., Lili, X. (2017), "Comparison of static pushover and dynamic analyses using RC building shaking table experiment", Eng. Struct., 136, 430-440. https://doi.org/10.1016/j.engstruct.2017.01.033.
- Lian, M., Su, M. and Guo, Y. (2015), "Seismic performance of eccentrically braced frames with high strength steel combination", Steel Compos. Struct., 18(6), 1517-1539. http://dx.doi.org/10.12989/scs.2015.18.6.1517.
- Linzell, D.G. and Nadakuditi, V.P. (2011), "Parameters influencing seismic response of horizontally curved, steel, I-girder bridges", Steel Compos. Struct., 11(1), 21-38. https://doi.org/10.12989/scs.2011.11.1.021.
- Mario, D. and Barbara, P. (2008), "A review of research on seismic behavior of irregular building structures since 2002", Bull. Earthq. Eng., 6, 285-308. https://doi.org/10.1007/s10518-007-9052-3
- Mohammadzadeh, B., Bina, M. and Hasounizadeh, H. (2012), "Application and comparison of mathematical and physical models on inspecting slab of stilling basin floor under static and dynamic forces", Appl. Mech. Mater., 147, 283-287. https://doi.org/10.4028/www.scientific.net/AMM.147.283.
- Mohammadzadeh, B. and Noh, H.C. (2014), "Investigation into central-difference and Newmark's beta method in measuring dynamic responses", Adv. Mater. Res., 831, 95-99. https://doi.org/10.4028/www.scientific.net/AMR.831.95.
- Mohammadzadeh, B. and Noh, H.C. (2017), "Analytical method to investigate nonlinear dynamic responses of sandwich plates with FGM faces resting on elastic foundation considering blast loads", Compos. Struct., 174, 142-157. https://doi.org/10.1016/j.compstruct.2017.03.087.
- Mohammadzadeh, B. and Noh, H.C. (2019), "An analytical and numerical investigation on the dynamic responses of steel plates considering the blast loads", Int. J. Steel Struct., 19(2), 603-617. https://doi.org/10.1007/s13296-018-0150-7.
- Mohammadzadeh, B., Choi, E. and Kim, W.J. (2018), "Comprehensive investigation of buckling behavior of plates considering effects of holes", Struct. Eng. Mech., 68(2), 261-275. https://doi.org/10.12989/sem.2018.68.2.261.
- Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 601-621. https://doi.org/10.12989/sem.2019.70.5.601.
- Mohammadzadeh, B., Jung, S., Lee, T.H., Le, Q.V., Cha, J.H., Jang, H.W., Lee, S.H., Kang, J. and Shokouhimehr, M. (2020), "Manufacturing ZrB2-SiC-TaC Composite: Potential Application for AircraftWing Assessed by Frequency Analysis through Finite Element Model", Materials, 13, 2213. https://doi:10.3390/ma13102213.
- Mohammadzadeh, B., Kang, J. and Im, S. (2020), "Blast loaded plates:Simplified analytical nonlinear dynamic approach", Structures, 28, 2034-2046. https://doi.org/10.1016/j.istruc.2020.10.043.
- Mohammadzadeh, B., Jung, S., Lee, T.H., Cha, J.H., Park, J., Shahedi Asl, M., Jang, H.W., Lee, S.H., Shokouhimehr, M. and Kang, J. (2021), "Characterization and FEA evaluation of a ZrB2-SiC ceramic containing TaC for beam-column joint application", Ceramics Int., 47, 11438-11450. https://doi.org/10.1016/j.ceramint.2020.12.271.
- Oikonomou, A. and Bougiatioti, F. (2011), "Architectural structure and environmental performance of the traditional buildings in Florina, NW Greece", Build. Environ., 46(3), 669-689. https://doi.org/10.1016/j.buildenv.2010.09.012.
- Ozmen, C. and Unay, A.I. (2007), "Commonly encountered seismic design faults due to the architectural design of residential buildings in Turkey", Build. Environ., 42, 1406-1416. https://doi.org/10.1016/j.buildenv.2005.09.029.
- Ozuygur, A.R. (2016), "Performance-based seismic design of an irregular tall building-A case study", Structures, 5, 112-122. https://doi.org/10.1016/j.istruc.2015.10.001.
- Parajuli, H.R., Shrestha, R.K. (2018), "Generation of Synthetic Ground Motion", J. Geological Resour. Eng., 6, 105-111. https:// doi:10.17265/2328-2193/2018.03.002.
- Pedro, N., Simoes da Silva, L., Bento, R. and Simoes, R. (2009), "Calibration of model parameters for the cyclic response of endplate beam-to-column steel-concrete composite joints", Steel Compos. Struct., 9(1), 39-58. https://doi.org/10.12989/scs.2009.9.1.039.
- Reyes-Salazar, A., Cervantes-Lugo, J.A., Lopez-Barraza, A., Bojórquez, E. and Bojorquez, J. (2016), "Seismic response of 3D steel buildings with hybrid connections: PRC and FRC", Steel Compos. Struct., 22(1), 113-139. http://dx.doi.org/10.12989/scs.2016.22.1.113.
- Sheehan, T., Chan, T.M. and Lam, D. (2015), "Mid-length lateral deflection of cyclically-loaded braces", Steel Compos. Struct., 18(6), 1569-1582. http://dx.doi.org/10.12989/scs.2015.18.6.1569.
- Takin, K., Hashemi, B.H. and Nekooei, M. (2016), "The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake", Steel Compos. Struct., 20(4), 801-812. http://dx.doi.org/10.12989/scs.2016.20.4.801.
- Vasilopoulos, A.A., Bazeos, N. and Beskos, D.E. (2008), "Seismic design of irregular space steel frames using advanced methods of analysis", Steel Compos. Struct., 8(1), 53-83. http://dx.doi.org/10.12989/scs.2008.8.1.053.
- Virella, J.C. and Godoy, L.A. (2009), "Dynamic response of empty steel tanks with dome roof under vertical base motion", Steel Compos. Struct., 9(2), 119-130. http://dx.doi.org/10.12989/scs.2009.9.2.119.