Browse > Article
http://dx.doi.org/10.7781/kjoss.2012.24.5.535

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar  

Eom, Tae-Sung (Dept. of Architecture, Catholic University of Daegu)
Hwang, Hyeon-Jong (Dept. of Architecture & Architectural Engineering, Seoul National University)
Park, Hong-Gun (Dept. of Architecture & Architectural Engineering, Seoul National University)
Lee, Chang-Nam (Sen Structural Engineers Co. Ltd.)
Kim, Hyoung-Seop (Sen Structural Engineers Co. Ltd.)
Publication Information
Journal of Korean Society of Steel Construction / v.24, no.5, 2012 , pp. 535-547 More about this Journal
Abstract
PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.
Keywords
composite column; SRC; angle; prefabrication; bond strength;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Morino, S. (1997) Recent Developments in Hybrid Structures in Japan-Research, Design and Construction Engineering Structures, Elsevier, Vol. 20, No. 4, pp.336-346.
2 김형근, 김명한, 조남규, 김상섭, 김상대(2009) yLRC 합성기둥의 압축강도에 관한 실험 연구, 한국강구조학회 논문집, 한국강구조학회, 제21권, 제5호, pp.545-552. Kim, H.G., Kim, M.H., Cho, N.G., Kim, S.S., and Kim, S.D. (2009) Experimental Study on the Compressive Strength of yLRC Composite Columns, Journal of Korean Society of Steel Construction, KSSC, Vol. 21, No. 5, pp.545-552 (in Korean).   과학기술학회마을
3 김보람, 강성덕, 김형근, 김명한, 김상대(2008) 강재 영구거푸집을 사용한 yLRC 합성기둥의 내화성능 연구, 한국강구조학회논문집, 한국강구조학회, 제20권, 제3호, pp.365-375. Kim, B.R., Kang, S.D., Kim, H.G., Kim, M.H., and Kim, S.D. (2008) A Study on the Fire Resistance of yLRC Composite Columns with Steel Sheet Forms and Angles, Journal of Korean Society of Steel Construction, KSSC, Vol. 20, No. 3, pp.365-375 (in Korean).   과학기술학회마을
4 Campione, G. (2010) R/C Columns Strengthend by Means of Steel Angles and Battens: Testing, Modeling and Design, Studies and Researches, Politecnico di Milano, Vol. 30, pp.42-72.
5 Monturi, R. and Piluso, V. (2009) Reinforced Concrete Columns Strengthened with Angles and Battens Subjected to Eccentric Load, Engineering Structures, Elsevier, Vol. 31, No. 2, pp.539-550   DOI   ScienceOn
6 황현종, 엄태성, 박홍근, 이창남, 김형섭(2012) 고강도 앵글을 적용한 선조립 합성기둥의 압축 실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.361-369. Hwang, H.J., Eom, T.S., Park, H.G., Lee, C.N., and Kim, H.S. (2012) Compression Test for Prefabricated Composite Columns Using High- Strength Steel Angles, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No.5, pp.361-369 (in Korean).   과학기술학회마을   DOI   ScienceOn
7 대한건축학회(2009) 건축구조설계기준 및 해설(KBC 2009) 기문당. AIK (2009) Korea building code and commentary - structural, Architectural Institute of Korea (in Korean)
8 AISC D1 (2010) Structural Welding Code Steel, American Welding Society, USA.
9 AISC 360 (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, USA.