• Title/Summary/Keyword: Resin-based composite

Search Result 312, Processing Time 0.019 seconds

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin;Lee, Seung-Wook;Kim, Ki Jae;Kim, Jae-Hun;Park, Min-Sik;Jeong, Goojin;Kim, Young-Jun;Byun, Dongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3589-3592
    • /
    • 2012
  • Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.

Fracture resistance of CAD-CAM all-ceramic surveyed crowns with different occlusal rest seat designs

  • Chaturvedi, Saurabh;Alqahtani, Turki;Alsolami, Saleh;Alqahtani, Abdulbari;Das, Gotam;Alsubaiy, Ebrahim
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.36-45
    • /
    • 2021
  • Purpose. To investigate the fracture resistance of monolithic CAD-CAM all-ceramic surveyed crowns with two different occlusal rest seat designs. Materials and Methods. Two maxillary first premolar were prepared for all-ceramic surveyed crowns with wide (2/3rd of buccolingual width of an unprepared tooth) or narrow (1/3rd of buccolingual width of an unprepared tooth) disto-occlusal rest seat (ORS) designs. Eighty monolithic CAD-CAM all-ceramic surveyed crowns were prepared and divided into 4 groups - Group CR, Composite resin material as a control; Group LDS, Lithium disilicate based material; Group ZIPS, zirconia-material (IPS ZirCAD); and Group ZLHT, zirconia- material (CeramillZolidht+). Crowns were cemented on an epoxy resin die with adhesive resin cement. The fracture resistance of crowns was tested with the universal machine. Univariate regression analysis was used. Results. The mean ± standard deviation of maximum failure force values varied from 3476.10 ± 285.97 N for the narrow ORS subgroup of group ZIPS to 687.89 ± 167.63 N for the wide ORS subgroup of group CR. The mean ± standard deviation of maximum force was 1075 ± 77.0 N for group CR, 1309.3 ± 283.9 N for group LDS, 3476.1 ± 285.97 N for group ZIPS, and 2666.7 ± 228.21 N for group ZLHT, with narrow occlusal rest seat design. The results of the intergroup comparison showed significant differences in fracture strength with various material groups and occlusal rest seat designs (P<.001). Conclusion. The zirconia-based all-ceramic surveyed crowns fractured at more than double the load of Lithium disilicate based crowns. The crowns with narrow base occlusal rest seat design had statistically significantly higher fracture resistance than surveyed crowns with wide occlusal rest seat design. The use of narrow occlusal rest seat design in CAD-CAM all ceramic surveyed crowns provides higher fracture resistance, and therefore narrow occlusal rest design can be used for providing esthetics with high strength.

Manufacturing of Wood Charcoal Cup by Using Carbonization Method and Its Water Repellency (목재를 이용한 무할렬 숯잔 제조 및 발수특성)

  • Park, Sang Bum;Lee, Min
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • With increased interests in environmental issues, people are looking for new materials that serve special and bio-activated functions. One of interesting materials is charcoal which has excellent adsorption ability for harmful volatile organic compounds, fireproof performance, far-infrared ray emission, and electromagnetic shielding. Since non-crack carbonized board was developed from wood-based composite materials, carbonization method might be applied to woodcraft products such as wood cup and bamboo. In this study, manufacture of wood charcoal bowl was conducted with carbonization method developed in 2009 in order to activate wood products market. Ash tree(Fraxinus rhynchophylla) cup was carbonized at $600^{\circ}C$ with two pretreatments which were phenol resin and wood tar solution treatment. After carbonization of ash tree cup, non-crack charcoal cup were successfully manufactured. Phenol resin treatment affected on charcoal cup manufacturing both positively and negatively. For a positive way, it prevented shrinkage. For a negative way, it decreased water repellency. On the contrary, wood tar treatment accelerated shrinkage a bit and increased water repellency. Based on the results, wood tar can be used as pre-treatment solution for reducing post-treatment costs. We confirmed woodcraft products can be carbonized without deformation, so carbonization may provide a high value-added products from wood.

  • PDF

Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory

  • Navi, B. Rousta;Mohammadimehr, M.;Arani, A. Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.753-767
    • /
    • 2019
  • Vibration control in mechanical equipments is an important problem where unwanted vibrations are vanish or at least diminished. In this paper, free vibration active control of the porous sandwich piezoelectric polymeric nanocomposite microbeam with microsensor and microactuater layers are investigated. The aim of this research is to reduce amplitude of vibration in micro beam based on linear quadratic regulator (LQR). Modified couple stress theory (MCST) according to sinusoidal shear deformation theory is presented. The porous sandwich microbeam is rested on elastic foundation. The core and face sheet are made of porous and three-phase carbon nanotubes/resin/fiber nanocomposite materials. The equations of motion are extracted by Hamilton's principle and then Navier's type solution are employed for solving them. The governing equations of motion are written in space state form and linear quadratic regulator (LQR) is used for active control approach. The various parameters are conducted to investigate on the frequency response function (FRF) of the sandwich microbeam for vibration active control. The results indicate that the higher length scale to the thickness, the face sheet thickness to total thickness and the considering microsensor and microactutor significantly affect LQR and uncontrolled FRF. Also, the porosity coefficient increasing, Skempton coefficient and Winkler spring constant shift the frequency response to higher frequencies. The obtained results can be useful for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Effects of specimens dimension on the flexural properties and testing reliability of dental composite resin (치과용 복합레진의 굽힘 특성과 시험 신뢰도에 미치는 시편 크기의 영향)

  • Im, Yong-Woon;Hwang, Seong-sig;Kim, Sa-hak;Lee, Hae-Hyoung
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.273-280
    • /
    • 2017
  • The aim of the present study was to investigate the effects of specimen dimension on the flexural properties and testing reliability of dental composite resin. The composite resin was prepared experimentally by mixing a resin matrix with silanated micrometer glass filler at 50 vol%. Flexural specimens with various dimension in specimen's width were fabricated by light curing using a split metal mold; $25{\times}2{\times}2mm$, $25{\times}2{\times}4mm$, $25{\times}2{\times}6mm$ in length ${\times}$ height ${\times}$ width. The flexural strength and modulus were determined according to ISO 4049 test protocol at a span length of 20 mm (normal-flexural strength; NFS). Another flexural test was conducted using mini-sized specimens ($12{\times}2{\times}2mm$, $12{\times}2{\times}4mm$, $12{\times}2{\times}6mm$) from the broken specimens at a span length of 10 mm (mini-flexural strength; MFS). Data were analyzed with ANOVA and Duncan's post-hoc test and the test reliability was evaluated by Weibull analysis. Results showed that there are generally no significant difference in flexural strength with the increase in the specimen width in NFS and MFS tests. However, the test reliability of flexural strength based on Weibull analysis was largely changed with the variables in the dimension of width and span length. The flexural modulus of NFS was increased as the dimension of specimens width increased while there was no trend in flexural modulus of MFS test. Overall results recommend that the evaluation of flexural properties and the reliability of dental composite resins should be performed with more than one test method.

Fracture resistance of upper central incisors restored with different posts and cores

  • Rezaei Dastjerdi, Maryam;Amirian Chaijan, Kamran;Tavanafar, Saeid
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • Objectives: To determine and compare the fracture resistance of endodontically treated maxillary central incisors restored with different posts and cores. Materials and Methods: Forty-eight upper central incisors were randomly divided into four groups: cast post and core (group 1), fiber-reinforced composite (FRC) post and composite core (group 2), composite post and core (group 3), and controls (group 4). Mesio-distal and bucco-lingual dimensions at 7 and 14 mm from the apex were compared to ensure standardization among the groups. Twelve teeth were prepared for crown restoration (group 4). Teeth in other groups were endodontically treated, decoronated at 14 mm from the apex, and prepared for posts and cores. Resin-based materials were used for cementation in groups 1 and 2. In group 3, composite was used directly to fill the post space and for core build-up. All samples were restored by standard metal crowns using glass ionomer cement, mounted at $135^{\circ}$ vertical angle, subjected to thermo-mechanical aging, and then fractured using a universal testing machine. Kruskal-Wallis and Mann-Whitney U tests were used to analyze the data. Results: Fracture resistance of the groups was as follows: Control (group 4) > cast post and core (group 1) > fiber post and composite core (group 2) > composite post and core (group 3). All samples in groups 2 and 3 fractured in restorable patterns, whereas most (58%) in group 1 were non-restorable. Conclusions: Within the limitations of this study, FRC posts showed acceptable fracture resistance with favorable fracture patterns for reconstruction of upper central incisors.

Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview

  • Cho, Donghwan;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.1-11
    • /
    • 2016
  • In efforts to characterize and understand the properties and processing of phenylethynyl-terminated imide (LaRC PETI-5, simply referred to as PETI-5) oligomers and polymers as a high-temperature sizing material for carbon fiber-reinforced polymer matrix composites, PETI-5 imidization and thermal curing behaviors have been extensively investigated based on the phenylethynyl end-group reaction. These studies are reviewed here. In addition, the use of PETI-5 to enhance interfacial adhesion between carbon fibers and a bismaleimide (BMI) matrix, as well as the dynamic mechanical properties of carbon/BMI composites, are discussed. Reports on the thermal expansion behavior of intercalated graphite flake, and the effects of exfoliated graphite nanoplatelets (xGnP) on the properties of PETI-5 matrix composites are also reviewed. The dynamic mechanical and thermal properties and the electrical resistivity of xGnP/PETI-5 composites are characterized. The effect of liquid rubber amine-terminated poly(butadiene-co-acrylonitrile) (ATBN)-coated xGnP particles incorporated into epoxy resin on the toughness of xGnP/epoxy composites is examined in terms of its impact on Izod strength. This paper provides an extensive overview from fundamental studies on PETI-5 and xGnP, as well as applied studies on relevant composite materials.

Friction and Wear Behavior of Carbon/carbon Composite Materials and its Application to a Neural Network (탄소/탄소 복합재료의 마찰 및 마모 거동과 신경회로망에의 적용에 관한 연구)

  • 류병진;윤재륜;권익환
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.13-26
    • /
    • 1994
  • Effects of resin contents, number of carbonization, graphitization, sliding speed, and oxidation on friction and wear behavior of carbon/carbon composite materials were investigated. Friction and wear tests were carried out under various sliding conditions. An experimental setup was designed and built in the laboratory. Stainless steel disks were used as the counterface material. Friction coefficient, emperature, and wear factor were measured with a data acquisition system. Wear surfaces were observed by the scanning electron microscope. It has been shown that the average friction coefficient was increased with the sliding speed in the range of 1.43~6.10 m/s, but it as decreased in the range of 6.10~17.35 m/s. Specimens prepared by different numbers of carbonization. showed variations in friction coefficient and friction coefficient of the graphitized specimen was the highest. Friction coefficients depended on contribution of the plowing and adhesive components. As the number of carbonization was increased, wear factor was reduced. Wear factor of the graphitized specimens dropped further. In the case of graphitized specimens, sliding speed had a large influence on wear behavior. When the tribological experiments were conducted in nitrogen atmosphere, the wear factor was decreased to two thirds of the wear factor obtained in air. It is obvious that the difference was affected by oxidation. Results of friction and wear tests were applied to a neural network system based on the backpropagation algorithm. A neural network may be a valuable tool for prediction of tribological behavior of the carbon/carbon composite material if ample data are present.

A Study on the Fracture Behavior of Laminated Carbon/Epoxy Composite by Acoustic Emission (음향방출법을 이용한 적층복합재료의 파괴거동 연구)

  • Oh, Jin-Soo;Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.326-333
    • /
    • 2010
  • In this study, DAQ and TRA modules were applied to the CFRP single specimen testing method using AE. A method for crack identification in CFRP specimens based on k-mean clustering and wavelet transform analysis are presented. Mode I on DCB under vertical loading and mode II on 3-points ENF testing under share loading have been carried out, thereafter k-mean method for clustering AE data and wavelet transition method per amplitude have been applied to investigate characteristics of interfacial fracture in CFRP composite. It was found that the fracture mechanism of Carbon/Epoxy Composite to estimate of different type of fractures such as matrix(epoxy resin) cracking, delamination and fiber breakage same as AE amplitude distribution using a AE frequency analysis. In conclusion, the presented results provide a foundation for using wavelet analysis as efficient crack detection tool. The advantage of using wavelet analysis is that local features in a displacement response signal can be identified with a desired resolution, provided that the response signal to be analyzed picks up the perturbations caused by the presence of the crack.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.