DOI QR코드

DOI QR Code

Fracture resistance of CAD-CAM all-ceramic surveyed crowns with different occlusal rest seat designs

  • Received : 2020.10.28
  • Accepted : 2021.02.02
  • Published : 2021.02.26

Abstract

Purpose. To investigate the fracture resistance of monolithic CAD-CAM all-ceramic surveyed crowns with two different occlusal rest seat designs. Materials and Methods. Two maxillary first premolar were prepared for all-ceramic surveyed crowns with wide (2/3rd of buccolingual width of an unprepared tooth) or narrow (1/3rd of buccolingual width of an unprepared tooth) disto-occlusal rest seat (ORS) designs. Eighty monolithic CAD-CAM all-ceramic surveyed crowns were prepared and divided into 4 groups - Group CR, Composite resin material as a control; Group LDS, Lithium disilicate based material; Group ZIPS, zirconia-material (IPS ZirCAD); and Group ZLHT, zirconia- material (CeramillZolidht+). Crowns were cemented on an epoxy resin die with adhesive resin cement. The fracture resistance of crowns was tested with the universal machine. Univariate regression analysis was used. Results. The mean ± standard deviation of maximum failure force values varied from 3476.10 ± 285.97 N for the narrow ORS subgroup of group ZIPS to 687.89 ± 167.63 N for the wide ORS subgroup of group CR. The mean ± standard deviation of maximum force was 1075 ± 77.0 N for group CR, 1309.3 ± 283.9 N for group LDS, 3476.1 ± 285.97 N for group ZIPS, and 2666.7 ± 228.21 N for group ZLHT, with narrow occlusal rest seat design. The results of the intergroup comparison showed significant differences in fracture strength with various material groups and occlusal rest seat designs (P<.001). Conclusion. The zirconia-based all-ceramic surveyed crowns fractured at more than double the load of Lithium disilicate based crowns. The crowns with narrow base occlusal rest seat design had statistically significantly higher fracture resistance than surveyed crowns with wide occlusal rest seat design. The use of narrow occlusal rest seat design in CAD-CAM all ceramic surveyed crowns provides higher fracture resistance, and therefore narrow occlusal rest design can be used for providing esthetics with high strength.

Keywords

References

  1. Freire Y, Gonzalo E, Lopez-Suarez C, Suarez MJ. The marginal fit of CAD/CAM monolithic ceramic and metal-ceramic crowns. J Prosthodont 2019;28:299-304. https://doi.org/10.1111/jopr.12590
  2. Rodriguez V, Castillo-Oyague R, Lopez-Suarez C, Gonzalo E, Pelaez J, Suarez-Garcia MJ. Fracture load before and after veneering zirconia posterior fixed dental prostheses. J Prosthodont 2016;25:550-6. https://doi.org/10.1111/jopr.12357
  3. Pelaez J, Cogolludo PG, Serrano B, Serrano JF, Suarez MJ. A four-year prospective clinical evaluation of zirconia and metal-ceramic posterior fixed dental prostheses. Int J Prosthodont 2012;25:451-8.
  4. Martinez-Rus F, Suarez MJ, Rivera B, Pradies G. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prosthet Dent 2011;105: 108-14. https://doi.org/10.1016/S0022-3913(11)60009-7
  5. Elshiyab SH, Nawafleh N, Ochsner A, George R. Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns. J Adv Prosthodont 2018;10:65-72. https://doi.org/10.4047/jap.2018.10.1.65
  6. Carracho JF, Razzoog ME. Removable partial denture abutments restored with all-ceramic surveyed crowns. Quintessence Int 2006;37:283-8.
  7. Manchester JA, Chung KH, Brudvik JS, Ramos V Jr, Chen YW. F racture resistance of cingulum rest seats in CAD-CAM tooth-colored crowns for removable partial enture abutments. J Prosthet Dent 2019;121:828-35. https://doi.org/10.1016/j.prosdent.2018.08.015
  8. Sattar J, Al Hmedat A, Jaber ZA. A comparison of fracture strength among different brands of translucent zirconia crown restorations. J Bio Agriculture Healthc 2016;6:111-9.
  9. Gouveia DNM, Razzoog ME, Alfaro MF. A fully digital approach to fabricating a CAD-CAM ceramic crown to fit an existing removable partial denture. J Prosthet Dent 2019;121:571-5. https://doi.org/10.1016/j.prosdent.2018.09.009
  10. Bethke A, Pieralli S, Kohal RJ, Burkhardt F, von Stein-Lausnitz M, Vach K, Spies BC. Fracture resistance of zirconia oral implants in vitro: a systematic review and meta-analysis. Materials (Basel) 2020;13:562. https://doi.org/10.3390/ma13030562
  11. Shahrbaf S, van Noort R, Mirzakouchaki B, Ghassemieh E, Martin N. Fracture strength of machined ceramiccrowns as a function of tooth preparation design and the elastic modulus of the cement. Dent Mater 2014;30:234-41. https://doi.org/10.1016/j.dental.2013.11.010
  12. Sagsoz NP, Yanikoglu N. Evaluation of the fracture resistance of computer-aided design/computer-aidedmanufacturing monolithic crowns prepared in different cement thicknesses. Niger J Clin Pract 2018;21:417-22.
  13. Pihlaja J, Napankangas R, Kuoppala R, Raustia A. Veneered zirconia crowns as abutment teeth for partial removable dental prostheses: a clinical 4-year retrospective study. J Prosthet Dent 2015;114:633-6. https://doi.org/10.1016/j.prosdent.2015.05.008
  14. Yoon TH, Chang WG. The fabrication of a CAD/CAM ceramic crown to fit an existing partial removable dental prosthesis: a clinical report. J Prosthet Dent 2012;108: 143-6. https://doi.org/10.1016/S0022-3913(12)60137-1
  15. Miura S, Kasahara S, Yamauchi S, Katsuda Y, Harada A, Aida J, Egusa H. A possible risk of CAD/CAM-produced composite resin premolar crowns on a removable partial denture abutment tooth: a 3-year retrospective cohort study. J Prosthodont Res 2019;63:78-84. https://doi.org/10.1016/j.jpor.2018.08.005
  16. Lan TH, Pan CY, Liu PH, Chou MMC. Fracture resistance of monolithic zirconia crowns in implant prostheses in patients with bruxism. Materials (Basel) 2019;12: 1623. https://doi.org/10.3390/ma12101623
  17. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014
  18. Glann G, Appleby R. Mouth preparation for removable partial dentures. J Prosthet Dent 1960;10:698-706. https://doi.org/10.1016/0022-3913(60)90251-1
  19. Perry C. A philosophy of partial denture design. J Prosthet Dent 1956;6:775-84. https://doi.org/10.1016/0022-3913(56)90075-0
  20. Miller E, Grasso J. Removable partial prosthodontics. 2. ed. Baltimore: Williams and Wilkins; 1981.
  21. Culwick PF, Howell PG, Faigenblum MJ. The size of occlusal rest seats prepared for removable partial dentures. Br Dent J 2000;189:318-22. https://doi.org/10.1038/sj.bdj.4800757
  22. Attia A, Abdelaziz KM, Freitag S, Kern M. Fracture load of composite resin and feldspathic all-ceramic CAD/CAM crowns. J Prosthet Dent 2006;95:117-23. https://doi.org/10.1016/j.prosdent.2005.11.014
  23. Sampaio-Fernandes MA, Sampaio-Fernandes MM, Fonseca PA, Almeida PR, Reis-Campos JC, Figueiral MH. Evaluation of occlusal rest seats with 3D technology in dental education. J Dent Educ 2015;79:166-76. https://doi.org/10.1002/j.0022-0337.2015.79.2.tb05871.x
  24. Chung SM, Yap AU, Tsai KT, Yap FL. Elastic modulus of resin-based dental restorative materials: a microindentation approach. J Biomed Mater Res B Appl Biomater 2005;72:246-53. https://doi.org/10.1002/jbm.b.30145
  25. Martinez-Rus F, Ferreiroa A, Ozcan M, Bartolome JF, Pradies G. Fracture resistance of crowns cemented on titanium and zirconia implant abutments: a comparison of monolithic versus manually veneered all-ceramic systems. Int J Oral Maxillofac Implants 2012;27: 1448-55.
  26. Brijawi A, Samran A, Samran A, Alqerban A, Murad M. Effect of different core design made of computer-aided design/computer-aided manufacturing system and veneering technique on the fracture resistance of zirconia crowns: a laboratory study. J Conserv Dent 2019;22:59-63. https://doi.org/10.4103/jcd.jcd_426_18
  27. Rice JA, Lynch CD, McAndrew R, Milward PJ. Tooth preparation for rest seats for cobalt-chromium removable partial dentures completed by general dental practitioners. J Oral Rehabil 2011;38:72-8. https://doi.org/10.1111/j.1365-2842.2010.02130.x
  28. Sato Y, Shindoi N, Koretake K, Hosokawa R. The effect of occlusal rest size and shape on yield strength. J Prosthet Dent 2003;89:503-7. https://doi.org/10.1016/S0022-3913(02)52739-6
  29. Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, Ortengren U. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand 2015;73:602-8. https://doi.org/10.3109/00016357.2015.1007479
  30. Kim JH, Park JH, Park YB, Moon HS. Fracture load of zirconia crowns according to the thickness and marginal design of coping. J Prosthet Dent 2012;108:96-101. https://doi.org/10.1016/S0022-3913(12)60114-0
  31. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: part 1. discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009;4:130-51.
  32. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  33. Anupama PD, Parakh MK, Krishna PD. Methods to enhance esthetics in removable prosthesis - a narrative review. Int J Clin Dent 2020;13:317-28.
  34. Kashkari A, Yilmaz B, Brantley WA, Schricker SR, Johnston WM. Fracture analysis of monolithic CAD-CAM crowns. J Esthet Restor Dent 2019;31:346-52. https://doi.org/10.1111/jerd.12462
  35. Okada R, Asakura M, Ando A, Kumano H, Ban S, Kawai T, Takebe J. Fracture strength testing of crowns made of CAD/CAM composite resins. J Prosthodont Res 2018;62:287-92. https://doi.org/10.1016/j.jpor.2017.10.003
  36. Ohlmann B, Gruber R, Eickemeyer G, Rammelsberg P. Optimizing preparation design for metal-free composite resin crowns. J Prosthet Dent 2008;100:211-9. https://doi.org/10.1016/S0022-3913(08)60180-8
  37. Kirsch C, Ender A, Attin T, Mehl A. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig 2017;21:551-8. https://doi.org/10.1007/s00784-016-1916-y