Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.001

Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview  

Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Drzal, Lawrence T. (Composite Materials and Structures Center, Michigan State University)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 1-11 More about this Journal
Abstract
In efforts to characterize and understand the properties and processing of phenylethynyl-terminated imide (LaRC PETI-5, simply referred to as PETI-5) oligomers and polymers as a high-temperature sizing material for carbon fiber-reinforced polymer matrix composites, PETI-5 imidization and thermal curing behaviors have been extensively investigated based on the phenylethynyl end-group reaction. These studies are reviewed here. In addition, the use of PETI-5 to enhance interfacial adhesion between carbon fibers and a bismaleimide (BMI) matrix, as well as the dynamic mechanical properties of carbon/BMI composites, are discussed. Reports on the thermal expansion behavior of intercalated graphite flake, and the effects of exfoliated graphite nanoplatelets (xGnP) on the properties of PETI-5 matrix composites are also reviewed. The dynamic mechanical and thermal properties and the electrical resistivity of xGnP/PETI-5 composites are characterized. The effect of liquid rubber amine-terminated poly(butadiene-co-acrylonitrile) (ATBN)-coated xGnP particles incorporated into epoxy resin on the toughness of xGnP/epoxy composites is examined in terms of its impact on Izod strength. This paper provides an extensive overview from fundamental studies on PETI-5 and xGnP, as well as applied studies on relevant composite materials.
Keywords
polyimide; exfoliated graphite nanoplatelets; carbon fiber; composite; properties;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Rabilloud G. High-Performance Polymers: Chemistry and Applications-Polyimides in Electronics, Institut Français du Pétrole Publication, Paris (2000).
2 Jang BZ. Advanced Polymer Composites: Principles and Applications, ASM International, Materials Park, Chapter 2 (1994).
3 Ghosh MK, Mittal MT. Polyimides: Fundamentals and Applications. Marcel Dekker, New York, Chapter 13 (1996).
4 Takekoshi T, Terry JM. High-temperature thermoset polyimides containing disubstituted acetylene end groups. Polymer, 35, 4874(1994). http://dx.doi.org/10.1016/0032-3861(94)90746-3.   DOI
5 Russell JD, Kardos JL. Crosslinking characterization of a polyimide: AFR700B. Polym Compos, 18, 595 (1997). http://dx.doi.org/10.1002/pc.10311.   DOI
6 Southcott M, Amone M, Senger J, Wang A, Polio A, Sheppards CH. The development of processable, fully imidized, polyimides for high-temperature applications. High Perform Polym, 6, 1(1994). http://dx.doi.org/10.1088/0954-0083/6/1/001.   DOI
7 Scola DA, Vontell JH. High temperature polyimides, chemistry and properties. Polym Compos, 9, 443 (1988). http://dx.doi.org/10.1002/pc.750090611.   DOI
8 Pater RH. Thermosetting polyimides: a review. SAMPE J, 30, 29(1994).
9 Hergenrother PM. In: Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI, eds. Encyclopedia of Polymer Science and Engineering, Vol. 1, Wiley, New York, 61 (1988).
10 Capo DJ, Schoenberg JE. Acetylenic-terminated fluorinated polyimide, properties and applications. SAMPE J, 23, 35 (1987).
11 Sastri SB, Keller TM, Jones KM, Armistead JP. Studies on cure chemistry of new acetylenic resins. Macromolecules, 26, 6171(1993). http://dx.doi.org/10.1021/ma00075a005.   DOI
12 Rossi RD. In: Dostal CA, ed. Engineered Materials Handbook, Vol. 3: Adhesives and Sealants, ASM International, Materials Park, 151(1990).
13 Hergenrother PM, Smith JG Jr. Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides. Polymer, 35, 4857 (1994). http://dx.doi.org/10.1016/0032-3861(94)90744-7.   DOI
14 Hergenrother PM, Bryant RG, Jensen BJ, Havens SJ. Phenylethynyl-terminated imide oligomers and polymers therefrom. J Polym Sci Part A Polym Chem, 32, 3061 (1994). http://dx.doi.org/10.1002/pola.1994.080321607.   DOI
15 Hou TH, Jensen BJ, Hergenrother PM. Processing and properties of IM7/PETI composites. J Compos Mater, 30, 109 (1996). http://dx.doi.org/10.1177/002199839603000107.   DOI
16 Bryant RG, Jensen BJ, Hergenrother PM. Chemistry and properties of a phenylethynyl-terminated polyimide. J Appl Polym Sci, 59, 1249 (1996). http://dx.doi.org/10.1002/(sici)1097-4628(19960222)59:8<1249::aid-app7>3.0.co;2-c.   DOI
17 Rommel ML, Konopka L, Hergenrother PM. Proceedings of 28th International SAMPE Techical Conference, Society for the Advancement of Materials and Processing, Baltimore, MD, 1 (1996).
18 Cano RJ, Jensen BJ. Effect of molecular weight on processing and adhesive properties of the phenylethynyl-terminated polyimide LARC™-PETI-5. J Adhes, 60, 113 (1997). http://dx.doi.org/10.1080/00218469708014413.   DOI
19 Hergenrother PM, Rommel ML. Proceedings of 41st International SAMPE Symposium, Society for Advancement of Material and Process Engineering, Anaheim, CA, 1061 (1996).
20 Jensen BJ. Copolyimides prepared from 3,4'-oxydianiline and 1,3-bis(3-aminophenoxy) benzene with 3,3'-4,4'-biphenylcarboxylic dianhydride having reactive end groups. US Patent 5,644,022(1997).
21 Cho D, Choi Y, Chang JH, Drzal LT. Interphase sizing temperature effect of LaRC PETI-5 on the dynamic mechanical thermal properties of carbon fiber/BMI composites. Compos Interfaces, 13, 215(2006). http://dx.doi.org/10.1163/156855406775997105.   DOI
22 Smith JG JR, Connell JW, Hergenrother PM. Proceedings of 43rd International SAMPE Symposium, Advancement of Material and Process Engineering, Anaheim, CA, 93 (1998).
23 Cho D, Drzal LT. Characterization, properties, and processing of LaRC PETI-5 as a high-temperature sizing material: II. thermal characterization. J Appl Polym Sci, 75, 1278 (2000). http://dx.doi.org/10.1002/(sici)1097-4628(20000307)75:10<1278::aid-app9>3.0.co;2-m.   DOI
24 Cho D, Drzal LT. Characterization, properties, and processing of LaRC PETI-5 as a high-temperature sizing material: I. FTIR studies on imidization and phenylethynyl end-group reaction behavior. J Appl Polym Sci, 76, 190 (2000). http://dx.doi.org/10.1002/(sici)1097-4628(20000411)76:2<190::aid-app8>3.0.co;2-8.   DOI
25 Rich DC, Sichel EK, Cebe P. Curing study of a preimidized photosensitive polyimide. Polym Eng Sci, 36, 2179 (1996). http://dx.doi.org/10.1002/pen.10615.   DOI
26 Jordan K, Iroh JO. Effect of isothermal aging on the imidization of PMR-15. Polym Eng Sci, 36, 2550 (1996). http://dx.doi.org/10.1002/pen.10654.   DOI
27 Pater RH, Morgan CD. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers: I. LaRC-RP40. SAMPE J, 24, 25 (1988).
28 Tai HJ, Jang BZ, Wang JB. Synthesis and processing of PMR-15/LaRC-TPI semi-IPN systems. J Appl Polym Sci, 58, 2293 (1995).http://dx.doi.org/10.1002/app.1995.070581217.   DOI
29 Kim DS, Lee JR. Characterization and properties of carbon/PMR-15 composites. Polym Adv Technol, 6, 711 (1995). http://dx.doi.org/10.1002/pat.1995.220061106.   DOI
30 Clemenson PI, Pandiman D, Pearson JT, Lavery AJ. Synthesis and characterization of new water-soluble precursors of polyimides. Polym Eng Sci, 37, 966 (1997). http://dx.doi.org/10.1002/pen.11741.   DOI
31 Pryde CA. IR studies of polyimides: I. effects of chemical and physical changes during cure. J Polym Sci Part A Polym Chem, 27, 711 (1989). http://dx.doi.org/10.1002/pola.1989.080270229.   DOI
32 Coburn JC, Pottiger MT. Thermal Curing in Polyimide Films and Coatings. In: Ghosh MK, Mittal KL, eds. Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 207 (1996).
33 Ishida H, Wellinghoff ST, Baer E, Koenig JL. Spectroscopic studies of poly[N,N'-bis(phenoxyphenyl)pyromellitimide]: 1. structures of the polyimide and three model compounds. Macromolecules, 13, 826 (1980). http://dx.doi.org/10.1021/ma60076a011.   DOI
34 Cho D, Choi Y, Drzal LT. Simultaneous monitoring of the imidization and cure reactions of LaRC PETI-5 sized on a braided glass fabric substrate by dynamic mechanical analysis. Polymer, 42, 4611 (2001). http://dx.doi.org/10.1016/s0032-3861(00)00863-6.   DOI
35 Johnston JA, Li FM, Harris FW, Takekoshi T. Synthesis and characterization of imide oligomers end-capped with 4-(phenylethynyl)phthalic anhydrides. Polymer, 35, 4865 (1994). http://dx.doi.org/10.1016/0032-3861(94)90745-5.   DOI
36 Fang X, Rogers DF, Scola DA, Stevens MP. A study of the thermal cure of a phenylethynyl-terminated imide model compound and a phenylethynyl-terminated imide oligomer (PETI-5). J Polym Sci Part A Polym Chem, 36, 461 (1998). http://dx.doi.org/10.1002/(sici)1099-0518(199802)36:3<461::aid-pola10>3.3.co;2-l.   DOI
37 Labronici M, Ishida H. Dynamic mechanical characterization of PMR polyimide/carbon fiber composites modified by fiber coating with silicones. Compos Interfaces, 5, 257 (1997). http://dx.doi.org/10.1163/156855498x00180.   DOI
38 Meyer GW, Glass TE, Grubbs HJ, McGrath JE. Synthesis and characterization of polyimides endcapped with phenylethynylphthalic anhydride. J Polym Sci Part A Polym Chem, 33, 2141 (1995). http://dx.doi.org/10.1002/pola.1995.080331307.   DOI
39 Hunt BJ, James MI. Polymer Characterisation, Chapman & Hall, London, Chapter 7 (1993).
40 Pascal T, Mercier R, Sillion B. New semi-interpenetrating polymeric networks from linear polyimides and thermosetting bismaleimides: 2. mechanical and thermal properties of the blends. Polymer, 31, 78 (1990). http://dx.doi.org/10.1016/0032-3861(90)90353-z.   DOI
41 Kuzak SG, Shanmugam A. Dynamic mechanical analysis of fiber-reinforced phenolics. J Appl Polym Sci, 73, 649 (1999). http://dx.doi.org/10.1002/(sici)1097-4628(19990801)73:5<649::aid-app5>3.0.co;2-b.   DOI
42 Thomason JL. Investigation of composite interphase using dynamic mechanical analysis: artifacts and reality. Polym Compos, 11, 105 (1990). http://dx.doi.org/10.1002/pc.750110206.   DOI
43 Dong S, Gauvin R. Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials. Polym Compos, 14, 414 (1993). http://dx.doi.org/10.1002/pc.750140508.   DOI
44 Elmore JS, Stinchcomb WW. Proceedings of the 7th Annual Meeting Adhesion Society, Jacksonville, FL, 150 (1994).
45 Cho D, Choi Y, Drzal LT. Characterization, properties, and processing of LaRC PETI-5 as a high-temperature sizing material: III. adhesion enhancement of carbon/BMI composites. J Adhes, 79, 1(2003). http://dx.doi.org/10.1080/00218460309559.   DOI
46 Herrera-Franco PJ, Drzal LT. Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 23, 2 (1992). http://dx.doi.org/10.1016/0010-4361(92)90282-y.   DOI
47 Lincoln JE, Morgan RJ, Shin EE. Moisture absorption-network structure correlations in BMPM/DABPA bismaleimide composite matrices. J Adv Mater, 32, 24 (2000).
48 Wilenski MS. The Improvement of the Hygrothermal and Mechanical Properties of Bismaleimide and K3B/IM7 Carbon Fiber Composites through a Systematic Study of the Interphase, Michigan State University, East Lansing, MI, PhD Thesis (1997).
49 Heisey CL, Wood PA, McGrath JE, Wightmany JP. Measurement of adhesion between carbon fibers and bismaleimide resins. J Adhes, 53, 117 (1995). http://dx.doi.org/10.1080/00218469508014375.   DOI
50 Nardin M, Asloun EM, Schultz J. Study of the carbon fiber–poly(ether–ether–ketone) (PEEK) interfaces, 2: relationship between interfacial shear strength and adhesion energy. Polym Adv Technol, 2, 115 (1991). http://dx.doi.org/10.1002/pat.1991.220020302.   DOI
51 Jangchud I, Eby RK, Serrano AM, Meador MA. Studies of PAN-based carbon fiber surfaces: their influence on interfacial bonding with PMR-15 polyimide and composite thermo-oxidative stability. J Adv Mater, 28, 19 (1996).
52 Donnet JB, Wang TK, Peng JCM, Rebouillat S. Carbon Fibers. 3rd ed., Marcel Dekker, New York (1998).
53 Wilkinson SP, Ward TC, McGrath JE. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials. Polymer, 34, 870 (1993). http://dx.doi.org/10.1016/0032-3861(93)90376-l.   DOI
54 Drzal LT. The role of the fiber-matrix interphase on composite properties. Vacuum, 41, 1615 (1990). http://dx.doi.org/10.1016/0042-207x(90)94034-n.   DOI
55 Drzal LT, Herrera-Franco PJ, Ho H. Fiber-Matrix Interface Tests. In: Kelly A, Zweben C, eds. Comprehensive Composite Materials, Elsevier Science Ltd., Amsterdam, Chapter 5 (2000).
56 Drzal LT, Rich MJ, Koenig MF, Lloyd PF. Adhesion of graphite fibers to epoxy matrices: II. the effect of fiber finish. J Adhes, 16, 133 (1983). http://dx.doi.org/10.1080/00218468308074911.   DOI
57 Blackketter DM, Upadhyaya D, King TR, King JA. Evaluation of fiber surfaces treatment and sizing on the shear and transverse tensile strengths of carbon fiber-reinforced thermoset and thermoplastic matrix composites. Polym Compos, 14, 430 (1993). http://dx.doi.org/10.1002/pc.750140510.   DOI
58 Kim JK, Mai YW. Engineered Interfaces in Fiber Reinforced Composites, Science Ltd., Amsterdam, Chapter 3 (1998).
59 Cho D, Kim HJ, Drzal LT. Surface Treatment and Characterization of Natural Fiber: Effects on the Properties of Biocomposites. In: Thomas S, Joseph K, Malhotra SK, Goda K, Sreekala MS, eds. Polymer Composites, Biocomposites, Wiley-VCH Verlag GmbH & Co, Weinhein, Chapter 4 (2013).
60 Pang Y, Cho D, Han SO, Park WH. Interfacial shear strength and thermal properties of electron beam-treated henequen fiber reinforced unsaturated polyester composites. Macromol Res, 13, 453(2005). http://dx.doi.org/10.1007/bf03218480.   DOI
61 Han SO, Cho D, Park WH, Drzal LT. Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Compos Interfaces, 13, 231 (2006). http://dx.doi.org/10.1163/156855406775997123.   DOI
62 Seo JM, Cho D, Park WH, Han SO, Hwang TW, Choi CH, Jung SJ. Fiber surface treatments for improvement of the interfacial adhesion and flexural and thermal properties of jute/poly (lactic acid) biocomposites. J Biobased Mater Bioenergy, 1, 331 (2007). http://dx.doi.org/10.1166/jbmb.2007.007.   DOI
63 Chen GH, Wu DJ, Weng WG, YAN WL. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci, 82, 2506 (2001). http://dx.doi.org/10.1002/app.2101.   DOI
64 Lee S, Cho D, Drzal LT. Real-time observation of the expansion behavior of intercalated graphite flake. J Mater Sci, 40, 231 (2005). http://dx.doi.org/10.1007/s10853-005-5715-0.   DOI
65 Chung DDL. Exfoliation of graphite. J Mater Sci, 22, 4190 (1987). http://dx.doi.org/10.1007/bf01132008.   DOI
66 Drzal LT, Fukushima H. Graphite nanoplatelets as reinforcements for polymers. Polym Prepr, 42, 42 (2001).
67 Kang F, Zheng YP, Wang HN, Nishi Y, Inagaki M. Effect of preparation conditions on the characteristics of exfoliated graphite. Carbon, 40, 1575 (2002). http://dx.doi.org/10.1016/s0008-6223(02)00023-4.   DOI
68 Dresselhaus MS. Modifying materials by intercalation. Phys Today, 37, 60 (1984). http://dx.doi.org/10.1063/1.2916162.   DOI
69 Shioyama H. The interactions of two chemical species in the interlayer spacing of graphite. Synth Met, 114, 1 (2000). http://dx.doi.org/10.1016/s0379-6779(00)00222-8.   DOI
70 Park SB, Lee MS, Park M. Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites. Carbon Lett, 15, 117 (2014). http://dx.doi.org/10.5714/cl.2014.15.2.117.   DOI
71 Zou JF, Yu ZZ, Pan YX, Fang XP, OU YC. Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J Polym Sci Part B Polym Phys, 40, 954 (2002). http://dx.doi.org/10.1002/polb.10141.   DOI
72 Koo MY, Shin HC, Kim WS, Lee GW. Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing. Carbon Lett, 15, 255 (2014). http://dx.doi.org/10.5714/cl.2014.15.4.255.   DOI
73 Cho D, Lee S, Yang G, Fukushima H, Drzal LT. Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol Mater Eng, 290, 179 (2005).   DOI
74 Kim M, Kim Y, Baeck SH, Shim SE. Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites. Carbon Lett, 16, 34 (2015). http://dx.doi.org/10.5714/cl.2015.16.1.034.   DOI
75 Magaraphan R, Lilayuthalert W, Sirivat A, Schwank JW. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Compos Sci Technol, 61, 1253 (2001). http://dx.doi.org/10.1016/s0266-3538(01)00026-4.   DOI
76 Cho D, Lee S, Yang G, Fukushima H, Drzal LT. Proceedings of the 14th International Conference on Composite Materials (ICCM-14), San Diego, CA, 471 (2003).
77 Jin FL, Park SJ. Recent advances in carbon-nanotube-based epoxy composites. Carbon Lett, 14, 1 (2013). http://dx.doi.org/10.5714/cl.2012.14.1.001.   DOI
78 Karevan M, Pucha RV, Bhuiyan MA, Kalaitzidou K. Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett, 11, 325 (2010). http://dx.doi.org/10.5714/cl.2010.11.4.325.   DOI
79 Park JK, Lee JY, Drzal LT, Cho D. Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers. Carbon Lett, 17, 33 (2016). http://dx.doi.org/10.5714/cl.2016.17.1.033.   DOI
80 Cho D, Fukushima H, Drzal LT. Effect of exfoliated graphite nanoplatelets on the fracture surface morphology and the electrical resistivity of phenylethynyl-terminated polyimide. Carbon Lett, 13, 121 (2012). http://dx.doi.org/10.5714/cl.2012.13.2.121.   DOI
81 Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK. Enhanced electrical conductivity of nanocomposite containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces, 1, 1090(2009). http://dx.doi.org/10.1021/am9000503.   DOI
82 Kim S, Seo J, Drzal LT. Improvement of electric conductivity of LLDPE based nanocomposite by paraffin coating on exfoliated graphite nanoplatelets. Compos Part A Appl Sci Manuf, 41, 581(2010). http://dx.doi.org/10.1016/j.compositesa.2009.05.002.   DOI
83 Kalaitzidou K, Fukushima H, Askeland P, Drzal LT. The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci, 43, 2895 (2008). http://dx.doi.org/10.1007/s10853-007-1876-3.   DOI
84 Li J, Vaisman L, Marom, G, Kim JK. Br treat graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon, 45, 744 (2007). http://dx.doi.org/10.1016/j.carbon.2006.11.031.   DOI
85 Kim S, Do I, Drzal LT. Multifunctional xGnP/LLDPE nanocomposites prepared by solution compounding using various screw rotating systems. Macromol Mater Eng, 294, 196 (2009). http://dx.doi.org/10.1002/mame.200800319.   DOI
86 Kalaitzidou K, Fukushima H, Drzal LT. A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold. Materials, 3, 1089 (2010). http://dx.doi.org/10.3390/ma3021089.   DOI
87 Liu W, Do I, Fukushima H, Drzal LT. Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett, 11, 279 (2010). http://dx.doi.org/10.5714/cl.2010.11.4.279.   DOI
88 Li J, Wong PS, Kim JK. Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A, 483-484, 660 (2008). http://dx.doi.org/10.1016/j.msea.2006.08.145.   DOI
89 Hwang JH, Cho D. Simultaneous enhancement of impact toughness, mechanical properties and thermo-dimensional stability of epoxy composites by rubber-coated exfoliated graphite nanoplatelets. Fibers Polym, 14, 1947 (2013). http://dx.doi.org/10.1007/s12221-013-1947-9.   DOI
90 Cho D, Hwang JH. Elastomeric coating of exfoliated graphite nanoplatelets with amine-terminated poly(butadiene-co-acrylonitrile): characterization and its epoxy toughening effect. Adv Polym Technol, 32, 21366 (2013). http://dx.doi.org/10.1002/adv.21366.   DOI
91 Najafi E, Kim JY, Han SH, Shin K. UV-ozone treatment of multiwalled carbon nanotubes for enhanced organic solvent dispersion. Colloids Surf A Physicochem Eng Asp, 284-285, 373 (2006). http://dx.doi.org/10.1016/j.colsurfa.2005.11.074.   DOI
92 Chen X, Wang J, Lin M, Zhong W, Feng T, Chen X, Chen J, Xue F. Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater Sci Eng A, 492, 236 (2008). http://dx.doi.org/10.1016/j.msea.2008.04.044.   DOI
93 Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon, 43, 153 (2005). http://dx.doi.org/10.1016/j.carbon.2004.08.033.   DOI
94 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.   DOI
95 Bose S, Drzal LT. Functionalization of graphene nanoplatelets using sugar azide for graphene/epoxy nanocomposites. Carbon Lett, 16, 101 (2015). http://dx.doi.org/10.5714/cl.2015.16.2.101.   DOI
96 Peng BX, Wong SS. Functional covalent chemistry of carbon nanotube surfaces. Adv Mater, 21, 625 (2009). http://dx.doi.org/10.1002/adma.200801464.   DOI
97 Choi SY, Chu JM, Lee EK. Influences of liquid rubber on the surfacial and mechanical properties of epoxy composites. Elastomers Compos, 43, 113 (2008).
98 Chikhi N, Fellahi S, Bakar M. Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J, 38, 251 (2002). http://dx.doi.org/10.1016/s0014-3057(01)00194-x.   DOI
99 Robinette EJ, Ziaee S, Palmese GR. Toughening of vinyl ester resin using butadiene-acrylonitrile rubber modifiers. Polymer, 45, 6143 (2004). http://dx.doi.org/10.1016/j.polymer.2004.07.003.   DOI
100 Chen S, Wang Q, Wang T. Hydroxy-terminated liquid nitrile rubber modified castor oil based polyurethane/epoxy IPN composites:damping, thermal and mechanical properties. Polym Test, 30, 726(2011). http://dx.doi.org/10.1016/j.polymertesting.2011.06.011.   DOI
101 Ramos VD, da Costa HM, Soares VLP, Nascimento RSV. Modification of epoxy resin: a comparison of different types of elastomer. Polym Test, 24, 387 (2005). http://dx.doi.org/10.1016/j.polymertesting.2004.09.010.   DOI
102 Ratna D, Banthia AK. Reactive acrylic liquid rubber with terminal and pendant carboxyl groups as a modifier for epoxy resin. Polym Eng Sci, 47, 26 (2007). http://dx.doi.org/10.1002/pen.20633.   DOI