• Title/Summary/Keyword: Reset windup

Search Result 16, Processing Time 0.021 seconds

Static anti-reset windup method for saturating control systems with multiple controllers and multiloop configuration (다중 제어기 및 다중 루우프로 구성된 포화 제어 시스템의 정적 리셋 와인드엎 방지 방법)

  • Park, Jong-Koo;Choi, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.248-256
    • /
    • 1996
  • This paper presents an anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. The proposed ARW method is motivated by the concept of equilibrium point. The design parameters of the ARW scheme is derive explicitly by minimizing a reasonable performance index. In the event of saturation, the resulting dynamics of the compensated controller reflects the dynamics of the linear closed-loop system. The proposed method guarantees the total stability o fthe resulting control systems under a certain condition. An illustrative example is given to show the effectiveness of the proposed method. The paper is an extension of the results in Park and Choi[10].

  • PDF

Anti-Reset windup basd compensation method for state constrained control systems (리셋 와인드엎 방지법에 기초한 상태 제한이 존재하는 제어 시스템의 보상 방법)

  • Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.511-520
    • /
    • 1999
  • An anti-reset windup (ARW) based compensation method for state constrained control systems is studied. First, a linear controller is constructed to give a desirable nominal performance ignoring state-constraints of a plant. Then, an additional compensator is introduced to provide smooth performance degradation under state-constraints of the plant. This paper focuses on the effective design method of the additional compensator. By minimizing a reasonable performance index, the proposed compensator is expressed in terms of theplant and ocntroller parameters. The resulting dynamics of the compensated controller exhibits the dominant part of the linear closed-loop system which can be seen from the singular perturbation model reducton theory. THe proposed method guarantees total stability of overall resulting systems if linear controllers were constructed to meet certain condition.

  • PDF

Dynamical anti-reset windup method for saturating control systems with multiple controllers and multiloop configuration and its application to motor control systems (다중 제어기 및 다중 루우프로 구성된 포화제어시스템의 동적 리셋 와인드엎 방지 방법과 모터제어에의 응용)

  • Park, Jong-Gu;Park, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.141-150
    • /
    • 1998
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimizes the objective function is derived in an integrated fashion. The proposed dynamical compensator is a closed form of plant and controller parameters. The resulting dynamics of compensated controller reflects the linear closed-loop system. The proposed method guarantees total stability of the resulting system. The effectiveness of the proposed method is illustrated by applying it to a servo motor control system. The paper is an extension of the results in Park and Choi[1].

  • PDF

Extension of the dynamic anti-reset windup method (다이나믹 리셋 와인드엎 방지방법의 확장)

  • 박종구;최종호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.73-76
    • /
    • 1996
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of the controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimize the objective function are derived in an integrated fashion. The proposed dynamical compensator is a closed form of the plant and controller parameters. The proposed method guarantees total stability of resulting system. An illustrative example is given to show the effectiveness of the proposed method.

  • PDF

Control of Discrete-time Saturating Systems by using Feedback Compensation Matrix (되먹임 보상 행렬을 이용한 이산 포화 시스템의 제어)

  • 박종구;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.447-457
    • /
    • 1994
  • This paper presents a compensation method for discrete-time control systems with saturation nonlinearities to cope with the reset windup phenomena. The proposed ARW (Anti-Reset Windup) method is motivated by the concept of the equilibrium point. The design parameter of the ARW scheme is explicitly derived by minimizing a reasonable performance index. The resulting dynamics of the compensated controller exhibits the reduced model form of the unsaturated system which can be obtained by the singular perturbational model reduction method. An example is given to illustrate the effectiveness of the proposed method.

STABILITY ANALYSIS OF A CONTROL SYSTEM QITH AN ANTIRESET-WINDUP LIMITER BY LIAPUNOV'S SECOND METHOD

  • Yang, Sangsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1289-1294
    • /
    • 1990
  • When a saturating control system has integral action, reset windup can cause instability as well as make the system performance unsatisfactory. An antirset-windup (ARW) limiter has been suggested to improve the stability and performance. It has been implemented with analog circuits and tested by simulations. This paper presents the stability condition of a double-integrator plant having the state feedback plus integral-action controller with the ARW limiter by using both Liapunov's second method and graphical method together.

  • PDF

Improvement of Practical Control Method for Positioning Systems in the Presence of Actuator Saturation by Incorporating Takagi-Sugeno(TSK) Fuzzy Anti-reset Windup

  • Ibrahim, Tarig Faisal;;Salami, M.J.E.;Albagul, Abdulgani
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.975-980
    • /
    • 2004
  • Positioning system is widely used for many practical applications. This system requires a good controller to achieve high accuracy and fast response with simple and self-adjustable design. In order to satisfy the above requirements, a new practical controller for positioning systems, namely nominal characteristic trajectory following (NCTF) controller with PI compensator, has been proposed. However, the effect of actuator saturation can not be completely compensated for integrator windup when the object parameters vary. This paper presents a method to improve the NCTF controller by overcoming the problem of integrator windup by adopting a fuzzy system. The improvement of the NCTF controller is evaluated through simulation using a rotary positioning system. The simulation result has demonstrated the effectiveness of the compensated NCTF in overcoming the problem of integrator windup.

  • PDF

Analysis on a Saturating System with an Intelligent Limiter (지능적인 제한기를 갖는 포화 시스템에 관한 해석)

  • Yang, Sang-Sik;Hong, Suk-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.417-426
    • /
    • 1991
  • All mechanical systems have saturation nonlinearity in actuators or in final control elements. When controllers have an integral action, reset windup can cause instability as well as make the system performance unsatisfacdtory. This paper presents an analysis of the stability of the control system with antireset-windup limiter, called intelligent limiter, using the describing function method. The responses of the system with this limiter are illustrated by computer simulation.

The Development of Anti-Windup Scheme for Time Delay Control with Switching Action Using Integral Sliding Surface (적분형 슬라이딩 서피스를 이용한 TDCSA(Time Delay Control With Switching Action)의 와인드업 방지를 위한 기법의 개발)

  • Lee, Seong-Uk;Jang, Pyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1534-1544
    • /
    • 2002
  • The TDCSA(Time Delay Control with Switching Action) method, which consists of Time Delay Control(TDC) and a switching action of sliding mode control(SMC), has been proposed as a promising technique in the robust control area, where the plant has unknown dynamics with parameter variations and substantial disturbances are preset. When TDCSA is applied to the plant with saturation nonlinearity, however, the so-called windup phenomena are observed to arise, causing excessive overshoot and instability. The integral element of TDCSA and the saturation element of a plant cause the windup phenomena. There are two integral effects in TDCSA. One is the integral effect occurred by time delay estimation of TDC. Other is the integral term of an integral sliding surface. In order to solve this problem, we have proposed an anti-windup scheme method for TDCSA. The stability of the overall system has been proved for a class of nonlinear system. Experiment results show that the proposed method overcomes the windup problem of the TDCSA.

A Study on the Stability of Supervisory Control for Nonlinear System with Saturating Input (포화입력을 가진 비선형 시스템에 대한 슈퍼바이저 제어의 안정성 연구)

  • 차경래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.112-122
    • /
    • 1999
  • In realistic control systems the nonlinear saturation attributes of the control actuator due to physical limitations should be taken into account This nonlinear saturation of actuators may cause not only deterioration of the control performance but also a large overshoot during start-up and shut-down. As the overshoot increases the system may become oscillatory unstable. in this paper the supervisor implementation which guarantees good performance for saturation operation and prevents reset wind up is presented, Moreover the sufficient conditions of the stability for saturated system using supervisory control with a dynamic controller are provided in the continuous-time and in the discrete-time domain Numerical example is illustrated to depict the efficiency of supervisory control for a typical satuaurated production-distribution system controlled by a discrete-time dynamic controller and to validate basic results by simulation.

  • PDF