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ABSTRACT

When a saturating control systew has integral
action, reset windup can czuse instability as well
An
antireset—windup (ARW) limiter has been suggested
It has
been implemented with analog circuits and tested by

as make the system performance unsatisfactory.
to improve the stability and performance.
simulations. This paper presents the stability
condition of a double-integrator plant having the
state feedback plus integral-action controller with

the ARW limiter by using both Liapunov’'s second
method and graphical method together.

1. INTRODUCTION

All  mechanical systems have saturation

nonlinearity in actuators and/or final control

elements (e.g., power amplifiers). Saturation is a
significant type of nonlinearity of mechanical
systems. When a saturating control

the

system has

integral-action in controller, controller
output will exceed the saturation level quickly for
a large reference input change. This results in a

large overshoot of the system response and the

phenomenon is called reset windup. Reset windup
can cause instability as well as make the system
performance unsatisfactory.

sampled—data systems have been
Kalman[3] dealt
with the problem of designing an optimal nonlinear

of Mullinf4]

Saturating
analyzed by Nease[1] and Torng[2].
controller saturating systen.
suggested a digital filter which forces the systems

to follow step or ramp inputs when saturation is

present. To stabilize a system with a nonlinear
actuator, Hsu and Meyer[5] inserted a nonlinear
element in the error path of the closed~loop
systen. To avoid the reset windup of an integrator

in a system with actuator saturation, Krikelis[6]
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used a nonlinear feedback element around the

integrator. All of these control schemes involve
tuning of the parameters that are in the filter or
Hanus[7] proposed a

feedback element

in the nonlinear elements,
technique using a proportional
around the integrator,

Glattfelder

but without any stability
analysis. and Schaufelberger{8]
presented the stability analysis of systems with an
antireset—windup (ARW) circuit based on the circle
By ARW the

stable region for the

criterion, using the circuit,
asymptotically

initial state can be extended.

system’s

Another scheme to avoid reset windup is to
keep the controller output to the upper (or lower)
saturation level of the final control element when
The controller

it tends to exceed the level.

resumes the integral action when the controller
output intends to fall within the linear range.
This scheme has been suggested by Phelan{9] for use
with the feedback’  (PDF)

controller, called intelligent PDF controller. It

‘pseudo dervative

consists of PDF controller and an ARW limiter which

needs no tuning of parameter and is different from

the ARW circuit of Glattfelder and
Schaufelberger([8]. It has been implemented
successfully with analog circuits and shown

effective by simulations. The stability of a
second-order plant having the PDF controller with
the ARW

limiter has been analyzed using the

describing function method in conjunction with
Nyquist stability theorem by Yang[10].

the method

However,

since describing function is an

approximate method, it does not give the necessary

and sufficient condition for the asymptotic
stability.
This paper presents the necessary and

sufficient condition for the asymptotic stability
of a double-intgrator plant having the state

feedback plus integral-action controller with the



ARW limiter by using both Liapunov’s second method
and graphical method together.

2. A SHARP LIAPUNOV FUNCTION OF A LINEAR SYSTEM

Most mechapical positioning systems are
modeled as a second-order system which consists of
one integrator and one first—-order dynamics with a
mechanical time constant. If it is assumed that
the mechanical time constant is large enough, that
is, the linear damping term is negligible, the
second—order system reduces to a double-integrator
system, This chapter presents the stability
analysis of a control system which consists of a
double-integrator plant and a state feedback plus

integral-action controller, The block diagram of

the system is shown in Figure 1. The state
equation is
= v,
(1)
. u
v =,
n
and the controller is represented as
. kd
u = kie - kpv - —u, (2)
m
The charateristic equation of the above |inear
system is
ms3 + kds? + kps + ki = 0, (3)

By using Routh criterion, the asymptotic stability
condition for the controller parameters is simply

obtained as

kakp > mki. (4)

The stability proof for a nonlinear system
introduced in Chapter 3 is presented by using the
Liapunov’s second method. In this chapter, a sharp
Liapunov function for the linear system is obtained
let a Liapunov function

for a later use, We

candidate, ¥(t, x) as

Fig. 1

The block diagram of the linear system.
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r(t, x) = xTrx, (5)
where
x=[e v ulT

and

N )

B ¢
The parameters are set as
a = kakp? + 2ka%ki,
b = m?ki + 2mkakp + kaa + 2ka3,

ki

kp?
c = + 2kd,
=i

A = -kd2kp — mkdki — mkp2,

B

2ka? + mkp,

¥ = mki — kdkp, (6)

If kakp > mki, then,

r(t, 0) =0, (7

F(t, x) >0 for all x = 0, (8)
and

v(t, 0) =0, (@

i’(t, x) < 0 for all x = 0, (10)
which is proven in Appendix A. Since this

condition is the necessary and sufficient condition
for asymptotic stability of the linear system, the
proposed Liapunov funtion candidate is a sharp

Liapunov function,

3. STABILITY OF THE SYSTEM WITH ARW LIMITER

In gereral, a saturation element exists right
before the double-integrator of the linear control
system in Chapter 2, and the system makes unstable
limit cycle for a large reference input signal
paper, the ARW

is used together with the

change[10]. In this limiter
suggested by Fhelan[9]
linear controller mentioned in Chapter 2 for the
control of the saturating double-integrator plant.
Figure 2 shows the overall block diagram of the
control system with a saturation element and the
ARW limiter, and Figure 3 shows the detail block

diagram of the ARW limiter. The state equation of



Antireset-
windup kmiter

Actuator
saturation

Fig. 2 The block diagram of the saturating system
with the ARW limiter.

Fig. 3 The block diagram of the ARW limiter.

the plant is the same as the one in Chapter 2. The
output, u of the ARW limiter preceded by the linear

controller is given by
@ =u = nly, W, (11)

where w is the output of the linear controller and

is also the input to the ARW limiter, which is
represented as

. kd

w = kie — kpv — —u (12)

n
and
0 if u=Handu >0,
n(u,fu):{oif u=-#and w< O, (13)

1 othervise,

where # is the saturation level, n is a switch to

the integral-action. When the output of the ARW
limiter is below the saturation level, n =1, that
is, the ARW limiter pass the input signal unchanged
and the control system behaves the same as the
linear control system in Chapter 2. If once the
output of the ARW limiter reaches the saturation
level and the input signal of the ARW limiter tends
n becomes 0, that

integrator of the ARW

to exceed the saturation level,
is, the limiter stops
integrating and keeps the output to the saturation
level until the sign of the derivative of the input
signal changes.

that is, the

At the time of sign change n

becomes 1, integrator of the ARW

limiter resumes integrating to escape from
saturation, and the output follows the input signal
with a certain difference resulted from stoping of
integration., In this way, the output of the ARW

limiter is kept within the linear range of
saturation element by either stoping or resuming
following the input signal, The switch is
controlled by the sign of the derivative of the
input signal when the output of the ARW limiter is
at the saturation level.

In order that the asymptotic stability of the
above nonlinear control system may be illustrated,
either the condition of Eq. (10) along a trajectory
during the saturation period or the net decrement
of the function between two points where the
saturation begins and ends must be proved, In this
paper, the latter proof is presented for both cases
that is,

of saturation (n = 0), when u = ¥ and

u = =M

whenu =¥ and w > O, the state equation

becomes
e = -v, (14)
. M
v= -, (15)
m

From the state equation, the relationship between e

and v is obtained as

m
e == — v + go, (16)
2M
vhere eo is constant along each trajectory. Since
w >0,
kq
kie = kpv = — M > 0. 17

mn

As shown in Figure 4, trajectories of the system
saturated at the upper level are on the left upper
half plane satisfying Eq. (17). If once saturation
starts at an arbitrary point, x = x1 on the left
upper plane, the system follows the trajectory and
finally, saturation ends in finite time at the
which is located on

That is , the

corresponding point, x = x2,

the boundary of the linear region.

saturation end point, xz is on the line given by
Mep

kd )
kiez — kEpvz = —uz = 0, v2 > -——, uz = ¥ (18)
m 21

Dbiously, the saturation end point exists and is



Fig. 4 Phase plane trajectories of the saturating

systen.

unique to every saturation start point. If kpka >

mki, the values of function, ¥(¢, x) at two points,

F(ty, x1) and V(tz, xz2) always satisfy that
Vity, x1) > Vitz, x2) ¥ set of x1 and xz, (19)
of which the proof is in Appendix B.

When u = =¥ and ®w < O, the state equation

becones
e = -, (20)
. M
v=- -, (21)
m

From the state equation, the relationship between e

and v is obtained as

m
e=— v? - eo, (22)
2M
where eo is constant along each trajectory, Since
l.u <o,
kd
kie — kpv + — M € O, (23)
]

Trajectories of the system saturated at the lower
level are on the right lower half plane satisfying
Eq. (23) as shown in Figure 4. All the statements

for the points, x1 and xz2, are also true of two
In the same way as the case of

if kpka > mki, the

points, x3 and x4,
saturation at the upper level,
vit, x)

Vits, x3) and ¥(ts, x4) always satisfy that

values of function, at two points,

V(ts, x3) > ¥(ta, xa) ¥V set of x3 and x4, (24)
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of which the proof is the same to the one in
Appendix B except for the signs.
(19) and (24), it is

concluded that the function, ¥(t, x) may increase

Therfore, from the Egs.

partially during the system is saturated, but the
net change of ¥ (t, x) between the start point and
the end point of any saturation period is negative.

Sumparizing all the results derived above, if

kpkd > mki, it is satisfied that

@ ¥(t, 0) =0, (25)
® V(t, x) >0 V x = O independent of n, (26)
© ¥(t, 0) =0, @n
) f’(t, x) <O ¥V x =0 along all trajectories
when n = 1 (system not saturated), (28)

E) ¥{(t1, x1) > V(tz2, x2) when n = 0 and u = M, (29)
)

V{ts, x3) > V(ta, xa) when n = 0 and u = -H, (30)

where x1 and x2, are any saturation start points
and x3 and x4 are the corresponding saturation end
points. When n = 0, using Eq. (29) the infimum of

V, Vi is

vi= ing V{t, x) = inf V(t, x2) (3D

n= u=M
Using Eqs. (5) and (18), it can be easily seen that
If ¥(0, x) < Vi,

the system never saturate and it behaves as the

there exists the infimum of ¥,

linear system of Chapter 2. So, the system

trajectory approaches asymptotically the
If ¥(0, x) > ¥i, the

system Ray saturate at finite time or may not

equilibrium point, x = O,
saturate. If the system does not saturate, it will
follow the trajectory in the linear region, If the
system saturate, it will escape from the saturation
in finite time with the value of ¥ reduced, and
f v

is not reduced enough in the linear trajectory, the

follow the trajectory in the linear region.

This phenomenon will be
If once ¥(t, x) < Vi,

system may saturate again.
repeated until ¥ (1, x) < Vi,
the system never saturate and the stability
analysis ends up with that of the linear s‘ystem in
Chapter 2. Therefore, the nonlinear system is
globally asymptotically stable if and only if the
stability condition of the linear system is
satisfied.

The time response of the saturating system
with the ARW limiter to a step reference input in
the case of stability limit is shown in Figure 5.

The figure illustrates that in the beginning the
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Fig. 5 Time response of the saturating system with
the ARW limiter in the case of stability limit.

amplitude of oscillation decreases until ¥V is

reduced enough below FVi. After the final

saturation, its behaviour is the same as the one of

the linear system, and it keeps oscillating.

4. CONCLUSIONS
The antireset-windup limiter was used with the
state feedback plus integral-action controller for

control of a double-integrator plant with

saturation nonlinearity. The necessary and

sufficient condition for the asymptotic stability
of the nonlinear control system was obtained by
using both Liapunov’s second method and graphical
method together. The nonlinear control system is

globally asymptotically stable if and only if the

stability condition of the corresponding linear

system is satisfied.
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APPENDIX A — A SHARP LIAPUNOV FUNCTION
If all principal minors of Y are positive, the
quadratic function, ¥ is positive definite. The

three principal minors are as fol lows:

kakp? + 2ka%ki
2

(i) |al=as=

a
(i) \ ‘=ab-a2
a b

kag?
= —4—[(mki + kakp)? + mkpd + 4kaki]

mke

2
+ (kBp2 + kaki)(kdkp ~ mEi).
4k i

(iiid)f a & B | = abe + 208y - b2 - ca2 - aB?
y B ¢
= S(kakp = mki).

where S is a positive constant. So, if kpkd > mki,

¥ is positive definite.



For the time derivative of V,
i’(t, x) = —xTWx,

where
V=~ - YF),

and from Egs. (1) and (2)

0 -1 0
F=1]0 (¢} /m
ki  kp -ka/m

And, W is obtained as

ki O 0
W = (kakp — mki)| O kd o}
0 O kp/mki

So, if kpkd > mki, Vis negative definite.

APPENDIX B

When the system is saturated (n = 0),

u=0,
and

F(t, x) = xT(FaTY + YFu)x,
where

-1 0
Fn=]|0 0 1/m
ki kp —kd/m

Then,

. a b
V(it, x) = —qev - a2 + —eu + [—— r]uv + —u2,
m m m

When u = ¥ and w > O, by using Eq. (186),

. am 3 b
Vit, x) = —v3 - —-w? + [—M - M- aeo]v
2M 2 m

+

ol

s>
SAQ

along the trajectory specified with a constant eo.
The net change of ¥(¢t, x) from an arbitrary
saturation start point, x: to a corresponding
saturation end point, x2 is represented as

tz .
N =¥ (tz, x2) = V(ty, x1) = [ vit, x)dt.
i1

Since v = A/m,
mfvz .
N o= - vit, x)av.
Mlvy
1f saturation starts at a point, xi, then eo is

specified and v2 is determined., We let vz as

vz = 0 + W, 0<w o
where
Mkp Mkp 2kaki  2mkiZ 172
g =—, W = —[ - + —eo]
mk i mk i kp? Mkp?

As shown in Figure 4, vi can be of any value

represented as
v = -0+ pw, -1 {(pK1

Performing the integration, A can be represented

as a polynomial of w.

W= At o+ B+ C0? v Do,

where
m2 2
A=- g;(kdzki + kdkpz)(l - Pz) <0,
1 kd
B = —(8ka2kp + ——kp3 + mRaki + mkp?)(1- p2)p,
2M ki
kp3
C = —(kakp — mki)(1 - p2) > 0,
ki?
M 2
D= —[(kdki ~ kp2)
n

+ kikp(kakp + mki)] (mki - kakp)(1 - p) <O,
for all p € (-1, 1) if kpka > mki. Throughout a
long complicated derivation, it is proved that

d(a)
— X0, Ye>O.
[« 3

Since

vl =0,
=0

A <0, Yw>0,Vpe (-1, 1),
that is,

V(ty, x1) > V(t2, x2) V set of x1 and xz.



