• Title/Summary/Keyword: Reporter

Search Result 940, Processing Time 0.032 seconds

Isolation and Characterization of Some Promoter Sequences from Leuconostoc mesenteroides SY2 Isolated from Kimchi

  • Park, Ji Yeong;Jeong, Seon-Ju;Kim, Jeong A;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1586-1592
    • /
    • 2017
  • Some promoters were isolated and characterized from the genome of Leuconostoc mesenteroides SY2, an isolate from kimchi, a Korean traditional fermented vegetable. Chromosomal DNA of L. mesenteroides SY2 was digested with Sau3AI and ligated with BamHI-cut pBV5030, a promoter screening vector containing a promoterless cat-86. Among E. coli transformants (TFs) resistant against Cm (chloramphenicol), 17 were able to grow in the presence of $1,000{\mu}g/ml$ Cm and their inserts were sequenced. Transcription start sites were examined for three putative promoters (P04C, P25C, and P33C) by primer extension. Four putative promoters were inserted upstream of a promoterless ${\alpha}$-amylase reporter gene in $pJY15{\alpha}$. ${\alpha}$-Amylase activities of E. coli TFs containing $pJY15{\alpha}$ (control, no promoter), $pJY03{\alpha}$ ($pJY15{\alpha}$ with P03C), $pJY04{\alpha}$ (with P04C), $pJY25{\alpha}$ (with P25C), and $pJY33{\alpha}$ (with P33C) were 66.9, 78.7, 122.1, 70.8, and 99.3 U, respectively. Cells harboring $pJY04{\alpha}$ showed 1.8 times higher activity than the control. Some promoters characterized in this study might be useful for construction of food-grade expression vectors for Leuconostoc sp. and related lactic acid bacteria.

Enhanced Production of Bacterial Cellulose in Komagataeibacter xylinus Via Tuning of Biosynthesis Genes with Synthetic RBS

  • Hur, Dong Hoon;Choi, Woo Sung;Kim, Tae Yong;Lee, Sang Yup;Park, Jin Hwan;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1430-1435
    • /
    • 2020
  • Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.

The Basis of Different Sensitivities of Ovarian Cancer Cells to the Recombinant Adenoviral Vector System Containing a Tumor-Specific L-plastin Promoter and E. coli Cytosine Deaminase Gene as a Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2009
  • We have reported previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase gene (CD) is driven by the tumor-specific L-plastin promoter. AdLPCD vector had been evaluated for its efficacy of chemosensitization of ovarian cancer cells to 5-FC. In spite of the fact that ovarian cancer cells, i.e., OVCAR-3 and SK-OV-3, are capable for adenoviral transduction judged by LacZ reporter gene analysis, two cell lines demonstrated quite different sensitivities toward AdLPCD/5-FC system. In OVCAR-3 cells, infection of AdLPCD followed by exposure to 5-FC resulted in the suppression of cell growth with statistical significance. On the other hand, SK-OV-3 cells were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The object of study was to investigate factors that would determine the sensitivity to AdLPCD/5-FC. We evaluated conversion rate of 5-FC to 5-FU after infection of AdLPCD by HPLC analysis, $IC_{50}$ of 5-FU, the expression level of integrin receptors i.e., ${\alpha}v{\beta}3$ and ${\alpha}v{\beta}5$, and status of p53 in OVCAR-3 and SK-OV-3 cells. The results indicated that OVCAR-3 cells have few favorable features compared with SK-OV-3 cells to be more effective to the AdLPCD/5-FC strategy; higher level of ${\alpha}v{\beta}5$ integrin, higher rate of conversion of 5-FC into 5-FC, and lower $IC_{50}$ of 5-FU. The results suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells

  • Bae, Eun Seo;Kim, Young-Mi;Kim, Dong-Hwa;Byun, Woong Sub;Park, Hyen Joo;Chin, Young-Won;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.465-472
    • /
    • 2020
  • Colorectal cancer (CRC) is one of the most malignant type of cancers and its incidence is steadily increasing, due to life style factors that include western diet. Abnormal activation of canonical Wnt/β-catenin signaling pathway plays an important role in colorectal carcinogenesis. Therefore, targeting Wnt/β-catenin signaling has been considered a crucial strategy in the discovery of small molecules for CRC. In the present study, we found that Nodosin, an ent-kaurene diterpenoid isolated from Isodon serra, effectively inhibits the proliferation of human colon cancer HCT116 cells. Mechanistically, Nodosin effectively inhibited the overactivated transcriptional activity of β-catenin/T-cell factor (TCF) determined by Wnt/β-catenin reporter gene assay in HEK293 and HCT116 cells. The expression of Wnt/β-catenin target genes such as Axin2, cyclin D1, and survivin were also suppressed by Nodosin in HCT116 cells. Further study revealed that a longer exposure of Nodosin induced the G2/M phase cell cycle arrest and subsequently apoptosis in HCT116 cells. These findings suggest that the anti-proliferative activity of Nodosin in colorectal cancer cells might in part be associated with the regulation of Wnt/β-catenin signaling pathway.

Genetic Transformation and Plant Regeneration of Codonopsis lanceolata Using Agrobacterium (Agrobacterium에 의한 더덕의 형질전환과 식물체 재분화)

  • 최필선;김윤성;유장렬;소웅영
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.315-318
    • /
    • 1994
  • To obtain transformed plants, we cocultured cotyledonary explants of Codonopsis lanceolata with Agrobacterium tumefaciens LBA4404, a disamed strain harboring a binary vector pBI121 carrying the CaMV35S promoter-$\beta$-glucuronidase (GUS) gene fusion used as a reporter gene and NOS promoter-neomycin phosphotransferase gene as a positive selection marker in MS liquid medium with 1mg/L BA. After 48 h of culture, explants were transferred onto MS solid medium with Img/L BA, 250mg/L carbenicillin, and 100mg/L kanamycin sulfate and cultured in the dark. Numerous adventitious buds formed on the cut edges of the explants after 2 weeks of culture. When subjected to GUS histochemical assay buds showed a positive response at a frequency of 15%. Explants formed adventitious shoot at a frequency of 56.7%, after 6 weeks of culture. Upon transfer onto the basal medium, most of the shoots were rooted and subsequently the regenerants were transplanted to potting soil. Southern blot analysis confirmed that the GUS gene was incorporated into the genomic DNA of the GUS-positive regenerants.

  • PDF

Functional Analysis of the High Affinity Phosphate Transporter Genes Derived from Oryza sativa in Arabidopsis thaliana. (애기장대에서의 벼 유래의 고친화성 인산 운반체 유전자들의 기능 분석)

  • Seo, Hyoun-Mi;Jung, Yun-Hui;Kim, Yun-Hye;Kwon, Tack-Min;Jeong, Soon-Jae;Yi, Young-Byung;Kim, Doh-Hoon;Nam, Jae-Sung
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.488-493
    • /
    • 2008
  • Phosphate, a favorable phosphorous form for plant, is one of major nutrient elements for growth and development in plants. Plants exhibit various physiological and biochemical responses in reaction to phosphate starvation in order to maintain phosphate homeostasis. Of them, expression of high affinity phosphate transporter gene family and efficient uptake of phosphate via them is a major physiological process for adaption to phosphate deficient environment. Although the various genetic resources of high affinity phosphate transporter are identified recently, little is known about their functions in plant that is prerequisite information before applying to crop plants to generate valuable transgenic plants. We demonstrated that Arabidopsis transgenic plants over-expressing two different high affinity phosphate transporter gens, OsPT1 and OsPT7, derived from rice, exhibit better growth responses compared with wild-type under phosphate starvation condition. Specially, OsPT7 gene has proven to be more effective to generate Arabidopsis transgenic plant tolerant to phosphate deficiency than OsPT1. Furthermore, the expression level of AtPT1 gene that is one of reporter genes specifically induced by phosphate starvation was significantly low compared with wild-type during phosphate starvation. Taken together, these results collectively suggest that over expression of OsPTl and OsPT7 genes derived from monocotyledonous plant function efficiently in the dicotyledonous plant, relieving stress response caused by phosphate starvation and leading to better growth rate.

Gateway RFP-Fusion Vectors for High Throughput Functional Analysis of Genes

  • Park, Jae-Yong;Hwang, Eun Mi;Park, Nammi;Kim, Eunju;Kim, Dong-Gyu;Kang, Dawon;Han, Jaehee;Choi, Wan Sung;Ryu, Pan-Dong;Hong, Seong-Geun
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.357-362
    • /
    • 2007
  • There is an increasing demand for high throughput (HTP) methods for gene analysis on a genome-wide scale. However, the current repertoire of HTP detection methodologies allows only a limited range of cellular phenotypes to be studied. We have constructed two HTP-optimized expression vectors generated from the red fluorescent reporter protein (RFP) gene. These vectors produce RFP-tagged target proteins in a multiple expression system using gateway cloning technology (GCT). The RFP tag was fused with the cloned genes, thereby allowing us localize the expressed proteins in mammalian cells. The effectiveness of the vectors was evaluated using an HTP-screening system. Sixty representative human C2 domains were tagged with RFP and overexpressed in HiB5 neuronal progenitor cells, and we studied in detail two C2 domains that promoted the neuronal differentiation of HiB5 cells. Our results show that the two vectors developed in this study are useful for functional gene analysis using an HTP-screening system on a genome-wide scale.

Methanol Extracts of Stewartia koreana Inhibit Cyclooxygenase-2 (COX-2) and Inducible Nitric Oxide Synthase (iNOS) Gene Expression by Blocking NF-κB Transactivation in LPS-activated RAW 264.7 Cells

  • Lee, Tae Hoon;Kwak, Han Bok;Kim, Hong-Hee;Lee, Zang Hee;Chung, Dae Kyun;Baek, Nam-In;Kim, Jiyoung
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.398-404
    • /
    • 2007
  • Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are involved in various pathophysiological processes such as inflammation and carcinogenesis. In a search for inhibitors of COX-2 and iNOS production we found that extracts of Stewartia koreana strongly inhibited NO and $PGE_2$ production in LPS-treated macrophage RAW 264.7 cells. We have now shown that the mRNA and protein levels of iNOS and COX-2 are reduced by the Stewartia koreana extract (SKE). SKE inhibited expression of an NF-${\kappa}B$ reporter gene in response to LPS, and gel mobility shift assays revealed that SKE reduced NF-${\kappa}B$ DNA-binding activity. The extract also inhibited LPS-induced phosphorylation of $I{\kappa}B-{\alpha}$ and nuclear translocation of p65. Administration of the extract reduced the symptoms of arthritis in a collagen-induced arthritic mouse model. These results indicate that Stewartia extracts contain potentially useful agents for preventing and treating inflammatory diseases.

Protein Arginine Methyltransferase 1 Methylates Smurf2

  • Cha, Boksik;Park, Yaerin;Hwang, Byul Nim;Kim, So-young;Jho, Eek-hoon
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.723-728
    • /
    • 2015
  • Smurf2, a member of the HECT domain E3 ligase family, is well known for its role as a negative regulator of TGF-${\beta}$ signaling by targeting Smads and TGF-${\beta}$ receptor. However, the regulatory mechanism of Smurf2 has not been elucidated. Arginine methylation is a type of post-translational modification that produces monomethylated or dimethylated arginine residues. In this report, we demonstrated methylation of Smurf2 by PRMT1. In vitro methylation assay showed that Smurf2, not Smurf1, was methylated by PRMT1. Among the type I PRMT family, only PRMT1 showed activity for Smurf2. Transiently expressed Smurf2 was methylated by PRMT1, indicating Smurf2 is a novel substrate of PRMT1. Using deletion constructs, methylation sites were shown to be located within amino acid region 224-298 of Smurf2. In vitro methylation assay following point mutation of putative methylation sites confirmed the presence of Arg232, Arg234, Arg237, and Arg239. Knockdown of PRMT1 resulted in increased Smurf2 expression as well as inhibition of TGF-${\beta}$-mediated reporter activity. Although it is unclear whether or not increased Smurf2 expression can be directly attributed to lack of methylation of arginine residues, our results suggest that methylation by PRMT1 may regulate Smurf2 stability and control TGF-${\beta}$ signaling.

Development of Inhibitors against TraR Quorum-Sensing System in Agrobacterium tumefaciens by Molecular Modeling of the Ligand-Receptor Interaction

  • Kim, Cheoljin;Kim, Jaeeun;Park, Hyung-Yeon;Park, Hee-Jin;Kim, Chan Kyung;Yoon, Jeyong;Lee, Joon-Hee
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.447-453
    • /
    • 2009
  • The quorum sensing (QS) inhibitors that antagonize TraR, a receptor protein for N-3-oxo-octanoyl-L-homoserine lactones (3-oxo-C8-HSL), a QS signal of Agrobacterium tumefaciens were developed. The structural analogues of 3-oxo-C8-HSL were designed by in silico molecular modeling using SYBYL packages, and synthesized by the solid phase organic synthesis (SPOS) method, where the carboxamide bond of 3-oxo-C8-HSL was replaced with a nicotinamide or a sulfonamide bond to make derivatives of N-nicotinyl-L-homoserine lactones or N-sulfonyl-L-homoserine lactones. The in vivo inhibitory activities of these compounds against QS signaling were assayed using reporter systems and compared with the estimated binding energies from the modeling study. This comparison showed fairly good correlation, suggesting that the in silico interpretation of ligand-receptor structures can be a valuable tool for the pre-design of better competitive inhibitors. In addition, these inhibitors also showed anti-biofilm activities against Pseudomonas aeruginosa.