• 제목/요약/키워드: Replication protein A

검색결과 324건 처리시간 0.022초

Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

  • Lee, Jinjoo;Byeon, Se Eun;Jung, Ju Yeol;Kang, Myeong-Ho;Park, Yu-Jin;Jung, Kyeong-Eun;Bae, Yong-Soo
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.122-129
    • /
    • 2015
  • DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleotides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.

Replication Association Study between RBC Indices and Genetic Variants in Korean Population

  • Lee, Sang In;Park, Sangjung;Jin, Hyun-Seok
    • 대한의생명과학회지
    • /
    • 제25권2호
    • /
    • pp.190-195
    • /
    • 2019
  • Hemoglobin (Hb) concentrations and hematocrit (Hct) values can be changed by factors such as erythrocyte production, destruction, and bleeding. In addition, variants in the protein expression involved in the amount of red blood cells that determine Hb metabolism or Hct value can increase susceptibility to complex blood diseases. Previous studies have reported significant single nucleotide polymorphisms (SNPs) by applying a genome-wide association study (GWAS) on Hb levels and Hct values in European population. In this study, we confirmed whether the significant SNPs are replicated in Koreans. In previous studies, 26 and 18 SNPs with a significant correlation Hb and Hct were identified in Korean genotype data, and 21 and 12 SNPs were selected, respectively. The SNPs of PRKCE (rs10495928), TMPRSS6 (rs2235321, rs5756505, rs855791) were significantly associated with Hb (P<0.05). In the association analysis of Hct, the SNPs of HBS1L (rs6920211, rs9389268, rs9483788), PRKCE (rs4953318), SCGN (rs9348689) and TMPRSS6 (rs2413450) genes showed a significant correlation (P<0.05). Replicated SNPs and not replicated SNPs showed the difference of genetic distance calculated by Fst. The replicated SNPs with a significant correlation showed similar allele frequencies, whereas the not replicated SNPs showed a large difference in allele frequency. All replicated SNPs with significant correlations had Fst values less than 0.05, indicating that the genetic distance between the groups was close. On the other hand, the not replicated SNPs showed that the Fst value was 0.05 or more and the genetic distance was relatively large.

Expression of FMD virus-like particles in yeast Hansenula polymorpha and immunogenicity of combine with CpG and aluminum adjuvant

  • Jianhui Zhang;Jun Ge;Juyin Li;Jianqiang Li;Yong Zhang;Yinghui Shi;Jiaojiao Sun;Qiongjin Wang;Xiaobo Zhang;Xingxu Zhao
    • Journal of Veterinary Science
    • /
    • 제24권1호
    • /
    • pp.15.1-15.13
    • /
    • 2023
  • Background: Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural viruses and are replication- and infection-incompetent. Objectives: The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of recombinant VLPs as an FMD vaccine was evaluated. Methods: BALB/c mice were immunized with recombinant purified VLPs using CpG oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, enzyme-linked immunospot assay, and flow cytometry. Results: The VLPs of FMD were purified successfully from yeast protein with a diameter of approximately 25 nm. The immunization of mice showed that animals produced high levels of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs. Conclusions: The expression of VLPs of FMD in H. polymorpha provides a novel strategy for the generation of the FMDV vaccine.

A Homeotic Gene, Hoxc8, Regulates the Expression of Proliferating Cell Nuclear Antigen in NIH3T3 Cell

  • ;;김명희
    • 대한의생명과학회지
    • /
    • 제13권3호
    • /
    • pp.239-244
    • /
    • 2007
  • Hoxc8 is one of the homeotic developmental control genes regulating the expression of many downstream target genes, through which animal body pattern is established during embryonic development. In previous proteomics analysis, proliferating cell nuclear antigen (PCNA) which is also known as cyclin, has been implied to be regulated by Hoxc8 in F9 murine embryonic teratocarcinoma cell. When the 5' upstream region of PCNA was analyzed, it turned out to contain 20 Hox core binding sites (ATTA) in about 1.17 kbp (kilo base pairs) region ($-520{\sim}-1690$). In order to test whether this region is responsible for Hoxc8 regulation, the upstream 2.3 kbp fragment of PCNA was amplified through PCR and then cloned into the pGL3 basic vector containing a luciferase gene as a reporter. When the luciferase activity was measured in the presence of effector plasmid (pcDNA : c8) expressing murine Hoxc8, the PCNA promoter driven reporter activity was reduced. To confirm whether this reduction is due to the Hoxc8 protein, the siRNA against Hoxc8 (5'-GUA UCA GAC CUU GGA ACU A-3' and 5'-UAG UUC CAA GGU CUG AUA C-3') was prepared. Interestingly enough, siRNA treatment up regulated the luciferase activity which was down regulated by Hoxc8, indicating that Hoxc8 indeed regulates the expression of PCNA, in particular, down regulation in NIN3T3 cells. These results altogether indicate that Hoxc8 might orchestrate the pattern formation by regulating PCNA which is one of the important proteins involved in several processes such as DNA replication and methylation, chromatin remodeling, cell cycle regulation, differentiation, as well as programmed cell death.

  • PDF

마렉병 바이러스의 분자적 병리기전과 증가하는 병원성에 대한 제어 방안 (Recent Molecular Studies of Marek's Disease Virus and Control Approaches for Increasing Virulence)

  • 장형관;박영명;차세연;권정택
    • 한국가금학회지
    • /
    • 제34권1호
    • /
    • pp.57-76
    • /
    • 2007
  • Marek's disease (MD) is caused by a ubiquitous, lymphotropic alphaherpesvirus, MD virus (MDV). MD has been a major concern in the poultry industry due to the emergence of increasingly virulent strains over the last few decades that were isolated in the face of comprehensive vaccination. MD is characterized by a variety of clinical signs, amongst them neurological symptoms, chronic wasting, and most notably the development of multiple lymphomas that manifest as solid tumors in the viscera and musculature. Much work has been devoted to study MD-induced oncogenesis and genes involved in this process. Among the many genes encoded by MDV, a number have recently been shown to affect the development of tumors in chickens, one protein directly causing transformation of cells (Meq) and another being involved in maintaining transformed cells (vTR). Other MDV gene products modulate and are involved in early lytic in vivo replication, thereby increasing the chance of transformation occurring. In this review, specific genes encoded by MDV that are involved in the initiation and/or maintenance of transformation were briefly summarized, and limits of current vaccination and new control strategies against MD, particularly how modem molecular biological methods may be used to improve strategies to combat the disease in the future, were discussed.

Identification of Causal and/or Rare Genetic Variants for Complex Traits by Targeted Resequencing in Population-based Cohorts

  • Kim, Yun-Kyoung;Hong, Chang-Bum;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • 제8권3호
    • /
    • pp.131-137
    • /
    • 2010
  • Genome-wide association studies (GWASs) have greatly contributed to the identification of common variants responsible for numerous complex traits. There are, however, unavoidable limitations in detecting causal and/or rare variants for traits in this approach, which depends on an LD-based tagging SNP microarray chip. In an effort to detect potential casual and/or rare variants for complex traits, such as type 2 diabetes (T2D) and triglycerides (TGs), we conducted a targeted resequencing of loci identified by the Korea Association REsource (KARE) GWAS. The target regions for resequencing comprised whole exons, exon-intron boundaries, and regulatory regions of genes that appeared within 1 Mb of the GWA signal boundary. From 124 individuals selected in population-based cohorts, a total of 0.7 Mb target regions were captured by the NimbleGen sequence capture 385K array. Subsequent sequencing, carried out by the Roche 454 Genome Sequencer FLX, generated about 110,000 sequence reads per individual. Mapping of sequence reads to the human reference genome was performed using the SSAHA2 program. An average of 62.2% of total reads was mapped to targets with an average 22X-fold coverage. A total of 5,983 SNPs (average 846 SNPs per individual) were called and annotated by GATK software, with 96.5% accuracy that was estimated by comparison with Affymetrix 5.0 genotyped data in identical individuals. About 51% of total SNPs were singletons that can be considered possible rare variants in the population. Among SNPs that appeared in exons, which occupies about 20% of total SNPs, 304 nonsynonymous singletons were tested with Polyphen to predict the protein damage caused by mutation. In total, we were able to detect 9 and 6 potentially functional rare SNPs for T2D and triglycerides, respectively, evoking a further step of replication genotyping in independent populations to prove their bona fide relevance to traits.

Human transcription factor YY1 could upregulate the HIV-1 gene expression

  • Yu, Kyung Lee;Jung, Yu Mi;Park, Seong Hyun;Lee, Seong Deok;You, Ji Chang
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.248-253
    • /
    • 2020
  • Gene expression in HIV-1 is regulated by the promoters in 5' long-terminal repeat (LTR) element, which contain multiple DNA regulatory elements that serve as binding sites for cellular transcription factors. YY1 could repress HIV-1 gene expression and latent infection. Here, however, we observed that virus production can be increased by YY1 over-expression and decreased under YY1 depleted condition by siRNA treatment. To identify functional domain(s) of YY1 activation, we constructed a number of YY1 truncated mutants. Our data show that full-length YY1 enhances the viral transcription both through U3 and U3RU5 promoters. Moreover, the C-terminal region (296-414 residues) of YY1 is responsible for the transcriptional upregulation, which could be enhanced further in the presence of the viral Tat protein. The central domain of YY1 (155-295 residues) does not affect LTR activity but has a negative effect on HIV-1 gene expression. Taken together, our study shows that YY1 could act as a transcriptional activator in HIV-1 replication, at least in the early stages of infection.

Understanding of the functional role(s) of the Activating Transcription Factor 4(ATF4) in HIV regulation and production

  • Lee, Seong-Deok;Yu, Kyung-Lee;Park, Seong-Hyun;Jung, Yu-Mi;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • 제51권8호
    • /
    • pp.388-393
    • /
    • 2018
  • The activating transcription factor (ATF) 4 belongs to the ATF/CREB (cAMP Response Element Binding bZIP [Basic Leucine Zipper]) transcription factor family, and plays a central role in the UPR (Unfolded Protein Response) process in cells. The induction of ATF4 expression has previously been shown to increase the replication of HIV-1. However, the detailed mechanism underlying this effect and the factors involved in the regulation of ATF4 function are still unknown. Here, we demonstrate first that knocking out ATF4 using siRNA shows a strong negative effect on HIV-1 production, indicating that ATF4 is a functional positive cellular factor in HIV-1 production. To determine the mechanism by which ATF4 regulates the HIV-1 life cycle, we assessed the effect of the overexpression of wild type ATF4 and its various derivatives on HIV-1 LTR-mediated transcriptional activation and the production of HIV-1 particles. This effect was studied through co-transfection experiments with either reporter vectors or proviral DNA. We found that the N-terminal domains of ATF4 are involved in HIV-1 LTR-mediated transcriptional activation, and thus in HIV-1 production.

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung;Kim Gun-Do;Choi Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.952-960
    • /
    • 2006
  • As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.

An in-silico approach to design potential siRNAs against the ORF57 of Kaposi's sarcoma-associated herpesvirus

  • Rahman, Anisur;Gupta, Shipan Das;Rahman, Md. Anisur;Tamanna, Saheda
    • Genomics & Informatics
    • /
    • 제19권4호
    • /
    • pp.47.1-47.12
    • /
    • 2021
  • Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the few human oncogenic viruses, which causes a variety of malignancies, including Kaposi's sarcoma, multicentric Castleman disease, and primary effusion lymphoma, particularly in human immunodeficiency virus patients. The currently available treatment options cannot always prevent the invasion and dissemination of this virus. In recent times, siRNA-based therapeutics are gaining prominence over conventional medications as siRNA can be designed to target almost any gene of interest. The ORF57 is a crucial regulatory protein for lytic gene expression of KSHV. Disruption of this gene translation will inevitably inhibit the replication of the virus in the host cell. Therefore, the ORF57 of KSHV could be a potential target for designing siRNA-based therapeutics. Considering both sequence preferences and target site accessibility, several online tools (i-SCORE Designer, Sfold web server) had been utilized to predict the siRNA guide strand against the ORF57. Subsequently, off-target filtration (BLAST), conservancy test (fuzznuc), and thermodynamics analysis (RNAcofold, RNAalifold, and RNA Structure web server) were also performed to select the most suitable siRNA sequences. Finally, two siRNAs were identified that passed all of the filtration phases and fulfilled the thermodynamic criteria. We hope that the siRNAs predicted in this study would be helpful for the development of new effective therapeutics against KSHV.