Browse > Article
http://dx.doi.org/10.5808/gi.21057

An in-silico approach to design potential siRNAs against the ORF57 of Kaposi's sarcoma-associated herpesvirus  

Rahman, Anisur (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University)
Gupta, Shipan Das (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University)
Rahman, Md. Anisur (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University)
Tamanna, Saheda (Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University)
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is one of the few human oncogenic viruses, which causes a variety of malignancies, including Kaposi's sarcoma, multicentric Castleman disease, and primary effusion lymphoma, particularly in human immunodeficiency virus patients. The currently available treatment options cannot always prevent the invasion and dissemination of this virus. In recent times, siRNA-based therapeutics are gaining prominence over conventional medications as siRNA can be designed to target almost any gene of interest. The ORF57 is a crucial regulatory protein for lytic gene expression of KSHV. Disruption of this gene translation will inevitably inhibit the replication of the virus in the host cell. Therefore, the ORF57 of KSHV could be a potential target for designing siRNA-based therapeutics. Considering both sequence preferences and target site accessibility, several online tools (i-SCORE Designer, Sfold web server) had been utilized to predict the siRNA guide strand against the ORF57. Subsequently, off-target filtration (BLAST), conservancy test (fuzznuc), and thermodynamics analysis (RNAcofold, RNAalifold, and RNA Structure web server) were also performed to select the most suitable siRNA sequences. Finally, two siRNAs were identified that passed all of the filtration phases and fulfilled the thermodynamic criteria. We hope that the siRNAs predicted in this study would be helpful for the development of new effective therapeutics against KSHV.
Keywords
guide strand; human herpesvirus-8; Kaposi's sarcoma; RNA interference; siRNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Leconet W, Petit P, Peraldi-Roux S, Bresson D. Nonviral delivery of small interfering RNA into pancreas-associated immune cells prevents autoimmune diabetes. Mol Ther 2012;20:2315-2325.   DOI
2 Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018;28:e1976.   DOI
3 Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 2015;4:e252.   DOI
4 Kerpedjiev P, Hammer S, Hofacker IL. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 2015;31:3377-3379.   DOI
5 Ishizuka A, Siomi MC, Siomi H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002;16:2497-2508.   DOI
6 Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 2016;23:73-82.   DOI
7 Shatizadeh Malekshahi S, Arefian E, Salimi V, Mokhtari Azad T, Yavarian J. Potential siRNA molecules for nucleoprotein and M2/L overlapping region of respiratory syncytial virus: in silico design. Jundishapur J Microbiol 2016;9:e34304.   DOI
8 Naito Y, Yoshimura J, Morishita S, Ui-Tei K. siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 2009;10:392.   DOI
9 Okonechnikov K, Golosova O, Fursov M, team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012;28:1166-1167.   DOI
10 Tafer H. Bioinformatics of siRNA design. (Gorodkin J, Ruzzo WL, eds.). In: RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods Totowa: Humana Press, 2014. pp. 477-490.
11 Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005;23: 457-462.   DOI
12 Sugiyama T, Gursel M, Takeshita F, Coban C, Conover J, Kaisho T, et al. CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J Immunol 2005;174:2273-2279.   DOI
13 Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, et al. Off-target effects by siRNA can induce toxic phenotype. RNA 2006;12:1188-1196.   DOI
14 Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019;24:69.   DOI
15 Aleman LM, Doench J, Sharp PA. Comparison of siRNA-induced off-target RNA and protein effects. RNA 2007;13:385-395.   DOI
16 Heale BS, Soifer HS, Bowers C, Rossi JJ. siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 2005;33:e30.   DOI
17 Vidarsdottir L, Goroshchuk O, Kolosenko I, Palm-Apergi C. Designing siRNA and evaluating its effect on RNA targets using qPCR and western blot. In: Oligonucleotide-Based Therapies: Methods and Protocols (Gissberg O, Zain R, Lundin KE, eds.). New York: Springer, 2019. pp. 59-72.
18 Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406-3415.   DOI
19 Lu ZJ, Mathews DH. Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 2008;36:640-647.   DOI
20 Singh S, Gupta SK, Nischal A, Khattri S, Nath R, Pant KK, et al. Design of potential siRNA molecules for hepatitis delta virus gene silencing. Bioinformation 2012;8:749-757.   DOI
21 Patzel V. In silico selection of active siRNA. Drug Discov Today 2007;12:139-148.   DOI
22 Gredell JA, Berger AK, Walton SP. Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study. Biotechnol Bioeng 2008;100:744-755.   DOI
23 Majerciak V, Yamanegi K, Nie SH, Zheng ZM. Structural and functional analyses of Kaposi sarcoma-associated herpesvirus ORF57 nuclear localization signals in living cells. J Biol Chem 2006;281:28365-28378.   DOI
24 Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004;117:69-81.   DOI
25 Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev 2005;19:517-529.   DOI
26 Orban TI, Izaurralde E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 2005;11:459-469.   DOI
27 Fatahzadeh M. Kaposi sarcoma: review and medical management update. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:2-16.   DOI
28 Veraitch O, Bower M, Shackleton D, Stebbing J. Rituximab therapy for HIV-associated multicentric Castleman disease. HIV Ther 2010;4:281-284.   DOI
29 Poole CL, James SH. Antiviral therapies for herpesviruses: current agents and new directions. Clin Ther 2018;40:1282-1298.   DOI
30 Steinberg I, Kimberlin DW. Acyclovir dosing and acute kidney injury: deviations and direction. J Pediatr 2015;166:1341-1344.   DOI
31 Wang K, Yang C, Ye J, Zeng F, Duan Y, Zheng Y, et al. Inhibition activity of herpes virus (HSV) replication by α-TIF siRNA-loaded PLGA-TPGS nanoparticles in vitro and in vivo. J Biomed Nanotechnol 2017;13:717-726.   DOI
32 ElHefnawi M, Kim T, Kamar MA, Min S, Hassan NM, El-Ahwany E, et al. In silico design and experimental validation of siRNAs targeting conserved regions of multiple hepatitis C virus genotypes. PLoS One 2016;11:e0159211.   DOI
33 Gatault P, Jones IKA, Meyer C, Kreklywich C, Alexander T, Smith PP, et al. Rat and human cytomegalovirus ORF116 encodes a virion envelope glycoprotein required for infectivity. Virology 2021;557:23-33.   DOI
34 Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000;7:203-214.   DOI
35 Lu JF, Jin TC, Zhou T, Lu XJ, Chen JP, Chen J. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Cyprinid Herpesvirus 2. Dev Comp Immunol 2021;116:103930.   DOI
36 Alterman JF, Godinho B, Hassler MR, Ferguson CM, Echeverria D, Sapp E, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol 2019;37:884-894.   DOI
37 Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res 2020;48:D84-D86.
38 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-1797.   DOI
39 Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009;25:1189-1191.   DOI
40 Ichihara M, Murakumo Y, Masuda A, Matsuura T, Asai N, Jijiwa M, et al. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res 2007;35:e123.   DOI
41 Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res 2001;29:1034-1046.   DOI
42 Matveeva O. What parameters to consider and which software tools to use for target selection and molecular design of small interfering RNAs. (Taxman DJ, ed.). In: siRNA Design: Methods and Protocols Totowa: Humana Press, 2013. pp. 1-16.
43 Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995;332:1186-1191.   DOI
44 Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM. Targeted disruption of Kaposi's sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 2007;81:1062-1071.   DOI
45 Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, et al. Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 2008;36:2136-2151.   DOI
46 Yuan F, Gao ZQ, Majerciak V, Bai L, Hu ML, Lin XX, et al. The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathog 2018;14:e1007232.   DOI
47 Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. Kaposi sarcoma. Nat Rev Dis Primers 2019;5:9.   DOI
48 Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 2004;316: 1050-1058.   DOI
49 Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004;32:936-948.   DOI
50 Uldrick TS, Wang V, O'Mahony D, Aleman K, Wyvill KM, Marshall V, et al. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without Multicentric Castleman disease. Clin Infect Dis 2010;51:350-358.   DOI
51 Agaba PA, Sule HM, Ojoh RO, Hassan Z, Apena L, Mu'azu MA, et al. Presentation and survival of patients with AIDS-related Kaposi's sarcoma in Jos, Nigeria. Int J STD AIDS 2009;20:410-413.   DOI
52 Renne R, Lagunoff M, Zhong W, Ganem D. The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 1996;70:8151-8154.   DOI
53 Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, et al. Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 2000;74:6207-6212.   DOI
54 Karim ME, Tha KK, Othman I, Borhan Uddin M, Chowdhury EH. Therapeutic potency of nanoformulations of siRNAs and shRNAs in animal models of cancers. Pharmaceutics 2018;10:65.   DOI
55 Mehta A, Michler T, Merkel OM. siRNA Therapeutics against respiratory viral infections-what have we learned for potential COVID-19 therapies? Adv Healthc Mater 2021;10:e2001650.
56 Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2007;2:2068-2078.   DOI
57 Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000;16:276-277.   DOI
58 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410.   DOI
59 Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007;35:D61-D65.   DOI
60 Zuber J, Mathews DH. Estimating uncertainty in predicted folding free energy changes of RNA secondary structures. RNA 2019;25:747-754.   DOI
61 Ui-Tei K, Nishi K, Takahashi T, Nagasawa T. Thermodynamic control of small RNA-mediated gene silencing. Front Genet 2012;3:101.   DOI
62 Matveeva OV, Kang Y, Spiridonov AN, Saetrom P, Nemtsov VA, Ogurtsov AY, et al. Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS One 2010;5:e10180.   DOI
63 Tamburro KM, Yang D, Poisson J, Fedoriw Y, Roy D, Lucas A, et al. Vironome of Kaposi sarcoma associated herpesvirus-inflammatory cytokine syndrome in an AIDS patient reveals co-infection of human herpesvirus 8 and human herpesvirus 6A. Virology 2012;433:220-225.   DOI
64 Nekorchuk M, Han Z, Hsieh TT, Swaminathan S. Kaposi's sarcoma-associated herpesvirus ORF57 protein enhances mRNA accumulation independently of effects on nuclear RNA export. J Virol 2007;81:9990-9998.   DOI
65 Ashraf MI, Leema AA. Identification of micro-RNA seed sequences and other possible conserved motifs: an information theoretic approach. J RNAi Gene Silencing 2017;13:570-572.
66 Kagu MB, Nggada HA, Garandawa HI, Askira BH, Durosinmi MA. AIDS-associated Kaposi's sarcoma in Northeastern Nigeria. Singapore Med J 2006;47:1069-1074.
67 Giffin L, Damania B. KSHV: pathways to tumorigenesis and persistent infection. Adv Virus Res 2014;88:111-159.   DOI
68 Goncalves PH, Uldrick TS, Yarchoan R. HIV-associated Kaposi sarcoma and related diseases. AIDS 2017;31:1903-1916.   DOI
69 Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and those without HIV infection. N Engl J Med 1995;332:1181-1185.   DOI
70 Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 1995;86:1276-1280.   DOI
71 Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 1996;93:14862-14867.   DOI
72 Gao SJ, Kingsley L, Li M, Zheng W, Parravicini C, Ziegler J, et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nat Med 1996;2:925-928.   DOI
73 Beral V, Peterman TA, Berkelman RL, Jaffe HW. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 1990;335:123-128.   DOI
74 Roshan R, Labo N, Trivett M, Miley W, Marshall V, Coren L, et al. T-cell responses to KSHV infection: a systematic approach. Oncotarget 2017;8:109402-109416.   DOI
75 Wabinga HR, Parkin DM, Wabwire-Mangen F, Mugerwa JW. Cancer in Kampala, Uganda, in 1989-91: changes in incidence in the era of AIDS. Int J Cancer 1993;54:26-36.   DOI
76 Parkin DM, Sitas F, Chirenje M, Stein L, Abratt R, Wabinga H. Part I: Cancer in Indigenous Africans: burden, distribution, and trends. Lancet Oncol 2008;9:683-692.   DOI
77 Neipel F, Albrecht JC, Fleckenstein B. Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 1997;71:4187-4192.   DOI
78 Majerciak V, Zheng ZM. KSHV ORF57, a protein of many faces. Viruses 2015;7:604-633.   DOI
79 Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 2008;9:474.   DOI
80 Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005;11:263-270.   DOI
81 Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K. Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 2008;36:7100-7109.   DOI
82 Ding Y, Chan CY, Lawrence CE. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 2004;32:W135-W141.   DOI
83 Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004;22:326-330.   DOI
84 Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014;42:D68-D73.   DOI
85 Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res 2008;36:W70-W74.   DOI
86 Bernhart SH, Tafer H, Muckstein U, Flamm C, Stadler PF, Hofacker IL. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 2006;1:3.   DOI
87 Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010;11:129.   DOI