• Title/Summary/Keyword: Replacement Policy

Search Result 383, Processing Time 0.236 seconds

Core-aware Cache Replacement Policy for Reconfigurable Last Level Cache (재구성 가능한 라스트 레벨 캐쉬 구조를 위한 코어 인지 캐쉬 교체 기법)

  • Son, Dong-Oh;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.1-12
    • /
    • 2013
  • In multi-core processors, Last Level Cache(LLC) can reduce the speed gap between the memory and the core. For this reason, LLC has big impact on the performance of processors. LLC is composed of shared cache and private cache. In computer architecture community, most researchers have mainly focused on the management techniques for shared cache, while management techniques for private cache have not been widely researched. In conventional private LLC, memory is statically assigned to each core, resulting in serious performance degradation when the workloads are not fairly distributed. To overcome this problem, this paper proposes the replacement policy for managing private cache of LLC efficiently. As proposed core-aware cache replacement policy can reconfigure LLC dynamically, hit rate of LLC is increases drastically. Moreover, proposed policy uses 2-bit saturating counters to improve the performance. According to our simulation results, the proposed method can improve hit rates by 9.23% and reduce the access time by 12.85% compared to the conventional method.

On Multipurpose Replacement Policies for the General Failure Model

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.393-403
    • /
    • 2003
  • In this paper, various replacement policies for the general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. In this model, when the unit fails at its age t, Type I failure occurs with probability 1-p(t) and Type II failure occurs with probability p(t), $0{\leq}p(t){\leq}1$. Under the model, optimal replacement policies for the long-run average cost rate and the limiting efficiency are considered. Also taking the cost and the efficiency into consideration at the same time, the properties of the optimal policies under the Cost-Priority-Criterion and the Efficiency-Priority-Criterion are obtained.

  • PDF

A Simulation Study on The Discounted Cost Distribution under Age Replacement Policy

  • Dohi, Tadashi;Ashioka, Akira;Kaio, Naoto;Osaki, Shunji
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.134-139
    • /
    • 2004
  • During the last three decades, a few attentions have been paid for investigating the cost distribution for the optimal maintenance problems. In this article, we derive the moment of the discounted cost distribution over an infinite time horizon for the basic age replacement problem. With first two moments of the discounted cost distribution, we approximate the underlying distribution function by three theoretical distributions. Through a Monte Carlo simulation, we conclude that the log-normal distribution is the best fitted one to approximate the discounted cost distribution.

손실함수를 고려한 주기적 검사정책을 갖는 열화시스템의 최적교체정책

  • 이창훈;박종훈
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.469-472
    • /
    • 2000
  • Replacement policy of a degradation of system is investigated by incorporating the loss function defined by the deviation of the value of quality characteristic from its target value, which determines the loss cost . Two cost minimization problems are formulated : 1)determination of an optimal inspection period given the state for the replacement and 2)determination of an optimal state for replacement under fixed inspect ion period. Simulation analysis is performed to observe the variation of total cost with respect to the variation of the parameters of loss function, inspection cost, respectively. As a result, parameters of loss function are seen to be the most sensitive to the total cost. On the contrary, inspect ion cost is observed to be insensitive.

  • PDF

Extended warranty policy when minimal repair cost is a function of failure time (최소수리비용이 고장시간의 함수일 때 연장된 보증 정책)

  • Jung, Ki Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1195-1202
    • /
    • 2012
  • In this paper, we determine the expected total cost from the user's perspective for the replacement model with the extended warranty when minimal repair cost is a function of failure time. To do so, we define the extended warranty and assume the replacement model following the expiration of extended warranty from the user's perspective. Especially, we propose the criterion to buy the extended warranty and the numerical examples are presented to illustrate the purpose when the failure time of the system has a Weibull distribution.

Active Page Replacement Policy for DRAM & PCM Hybrid Memory System (DRAM&PCM 하이브리드 메모리 시스템을 위한 능동적 페이지 교체 정책)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.261-268
    • /
    • 2018
  • Phase Change Memory(PCM) with low power consumption and high integration attracts attention as a next generation nonvolatile memory replacing DRAM. However, there is a problem that PCM has long latency and high energy consumption due to the writing operation. The PCM & DRAM hybrid memory structure is a fruitful structure that can overcome the disadvantages of such PCM. However, the page replacement algorithm is important, because these structures use two memory of different characteristics. The purpose of this document is to effectively manage pages that can be referenced in memory, taking into account the characteristics of DRAM and PCM. In order to manage these pages, this paper proposes an page replacement algorithm based on frequently accessed and recently paged. According to our simulation, the proposed algorithm for the DRAM&PCM hybrid can reduce the energy-delay product by around 10%, compared with Clock-DWF and CLOCK-HM.

A Preventive Replacement Model for Standby Systems (대기구조를 갖는 시스템의 예방 교체 모형)

  • Lee, Hyo-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.555-570
    • /
    • 1995
  • We consider a preventive replacement policy for a cold-standby system with N components, in which only one component is in operation at a time. If the component in operation fails, a standby component is immediately switched into operation. If all components fail, the system fails. The system is inspected at random poins in time to determine whether it is to be replaced or not. If the number of failed components at the time of inspection exceeds a threshold value r, the system is replaced. Otherwise the decision is put off until the next inspection point arrives. Under the cost structure which includes a replacement cost, a system down-time cost and a holding cost of the components, we develop an efficient procedure to find the optimal control values N and r, which minimize the expected cost per unit time.

  • PDF

Dynamic Programming Model for Optimal Replacement Policy with Multiple Challengers (다수의 도전장비 존재시 설비의 경제적 수명과 최적 대체결정을 위한 동적 계획모형)

  • Kim, Tae-Hyun;Kim, Sheung-Kown
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.466-475
    • /
    • 1999
  • A backward Dynamic Programming(DP) model for the optimal facility replacement decision problem during a finite planning horizon is presented. Multiple alternative challengers to a current defender are considered. All facilities are assumed to have finite service lives. The objective of the DP model is to maximize the profit over a finite planning horizon. As for the cost elements, purchasing cost, maintenance costs and repair costs as well as salvage value are considered. The time to failure is assumed to follow a weibull distribution and the maximum likelihood estimation of Weibull parameters is used to evaluate the expected cost of repair. To evaluate the revenue, the rate of operation during a specified period is employed. The cash flow component of each challenger can vary independently according to the time of occurrence and the item can be extended easily. The effects of inflation and the time value of money are considered. The algorithm is illustrated with a numerical example. A MATLAB implementation of the model is used to identify the optimal sequence and timing of the replacement.

  • PDF

A Warranty Policy with Replacement and Repair Periods (교체와 수리기간을 가진 보증정책)

  • 윤원영;유승효
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • This paper compares the two policies which are unsed in Korean electronic appliance industry. Policy I is a general warranty policy under which all of failures during warrenty period (12 months) are repaired without charge. Policy II was proposed recently by a company. Under Policy II, when the product fails until a certain times(6 months), the failed product will be replaced by the new product and all other failures from the certain time to the warrenty period (24 months) will be repaired free. We obtain the expected total warranty costs per product and necessary conditions under which the Policy II has a meaning in economic point of view without or with discount rate. Some numericla examples are considered.

  • PDF

A Study on Condition-based Maintenance Policy using Minimum-Repair Block Replacement (최소수리 블록교체 모형을 활용한 상태기반 보전 정책 연구)

  • Lim, Jun Hyoung;Won, Dong-Yeon;Sim, Hyun Su;Park, Cheol Hong;Koh, Kwan-Ju;Kang, Jun-Gyu;Kim, Yong Soo
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2018
  • Purpose: This study proposes a process for evaluating the preventive maintenance policy for a system with degradation characteristics and for calculating the appropriate preventive maintenance cycle using time- and condition-based maintenance. Methods: First, the collected data is divided into the maintenance history lifetime and degradation lifetime, and analysis datasets are extracted through preprocessing. Particle filter algorithm is used to estimate the degradation lifetime from analysis datasets and prior information is obtained using LSE. The suitability and cost of the existing preventive maintenance policy are each evaluated based on the degradation lifetime and by using a minimum repair block replacement model of time-based maintenance. Results: The process is applied to the degradation of the reverse osmosis (RO) membrane in a seawater reverse osmosis (SWRO) plant to evaluate the existing preventive maintenance policy. Conclusion: This method can be used for facilities or systems that undergo degradation, which can be evaluated in terms of cost and time. The method is expected to be used in decision-making for devising the optimal preventive maintenance policy.