• Title/Summary/Keyword: Repeated hysteresis

Search Result 30, Processing Time 0.029 seconds

Thermal stability and Young's modulus of mechanically exfoliated flexible mica

  • Jin, Da Woon;Ko, Young Joon;Kong, Dae Sol;Kim, Hyun Ki;Ha, Jae-Hyun;Lee, Minbaek;Hong, Jung-Il;Jung, Jong Hoon
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1486-1491
    • /
    • 2018
  • In recent years, mica has been successfully used as a substrate for the growth of flexible epitaxial ferroelectric oxide thin films. Here, we systematically investigated the flexibility of mica in terms of its thickness, repeated bending/unbending, extremely hot/cold conditions, and successive thermal cycling. A $20-{\mu}m-thick$ sheet of mica is flexible even up to the bending radius of 5 mm, and it is durable for 20,000 cycles of up- and down-bending. In addition, the mica shows flexibility at 10 and 773 K, and thermal cycling stability for the temperature variation of ca. 400 K. Compared with the widely used flexible polyimide, mica has a significantly higher Young's modulus (ca. 5.4 GPa) and negligible hysteresis in the force-displacement curve. These results show that mica should be a suitable substrate for piezoelectric energy-harvesting applications of ferroelectric oxide thin films at extremely low and high temperatures.

Study on seismic performance of connection joint between prefabricated prestressed concrete beams and high strength reinforcement-confined concrete columns

  • Jiang, Haotian;Li, Qingning;Jiang, Weishan;Zhang, De-Yi
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.343-356
    • /
    • 2016
  • As the common cast-in-place construction works fails to meet the enormous construction demand under rapid economic growth, the development of prefabricated structure instead becomes increasingly promising in China. For the prefabricated structure, its load carrying connection joint play a key role in maintaining the structural integrity. Therefore, a novel end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column was proposed. Under action of low cycle repeated horizontal loadings, comparative tests are conducted on 6 prefabricated pre-stressed intermediate joint specimens and 1 cast-in-place joint specimen to obtain the specimen failure modes, hysteresis curves, skeleton curves, ductility factor, stiffness degradation and energy dissipation capacity and other seismic indicators, and the seismic characteristics of the new-type prefabricated beam-column connecting joint are determined. The test results show that all the specimens for end plate bolt connecting joint between fully prefabricated pre-stressed concrete beam and high-strength reinforcement-confined concrete column have realized the design objectives of strong column weak beam. The hysteretic curves for specimens are good, indicating desirable ductility and energy dissipation capacity and seismic performances, and the research results provide theoretical basis and technical support for the promotion and application of prefabricated assembly frames in the earthquake zone.

A SIMPLED MODEL FOR HIGHER ORDER SCANNING CURVES IN THE SOIL WATER CHARACTERISTIC FUNCTION (토양수분 특성함수의 고차 SCANNING 커브에 대한 간략한 모델)

  • 정상옥
    • Water for future
    • /
    • v.21 no.2
    • /
    • pp.193-201
    • /
    • 1988
  • A simplified model for higher order scanning curves in the soil water characteristic function is suggested. The conceptual hysteresis models developed by $Mualem_{8,9}$ are simplied for higher order scanning curves. Higher order drying curves are regarded as primary drying curves and the last wetting reversal point is assumed to be on the main wetting curve by moving that point vertically downward. For the higher order wetting curves, it is assumed that these curves can be regarded as primary curves and the last wetting reversal point sits on the imaginary main drying curve which passes through the last wetting reversal point. The water content computed from the simplified model are compared with those obtained from Mualem's original model for second order scanning curves. It is found that absolute differences between the two methods aree relatively small and the simplified model always underestimates for higher order drying curves while it overestimates for higher order wetting curves. Hence, those two tend to compensate each other for repeated drying-wetting processes. The simplified model approximates higher order scanning curves well and reduces computation considerably.

  • PDF

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.

Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators

  • Song, Gangbing;Ma, Ning;Li, Luyu;Penney, Nick;Barr, Todd;Lee, Ho-Jun;Arnold, Steve
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • It has been shown in the literature that active adjustment of the intake area of a jet engine has potential to improve its fuel efficiency. This paper presents the design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators. The Nitinol SMA material is used in this research due to its advantages of high power-to-weight ratio and electrical resistive actuation. The Nitinol SMA material can be fabricated into a variety of shapes, such as strips, foils, rods and wires. In this paper, SMA wires are used due to its ability to generate a large strain: up to 6% for repeated operations. The proposed proof-of-concept engine intake employs overlapping leaves in a concentric configuration. Each leaf is mounted on a supporting bar than can rotate. The supporting bars are actuated by an SMA wire actuator in a ring configuration. Electrical resistive heating is used to actuate the SMA wire actuator and rotate the supporting bars. To enable feedback control, a laser range sensor is used to detect the movement of a leaf and therefore the radius of the intake area. Due to the hysteresis, an inherent nonlinear phenomenon associated with SMAs, a nonlinear robust controller is used to control the SMA actuators. The control design uses the sliding-mode approach and can compensate the nonlinearities associated with the SMA actuator. A proof-of-concept model is fabricated and its feedback control experiments show that the intake area can be precisely controlled using the SMA wire actuator and has the ability to reduce the area up to 25%. The experiments demonstrate the feasibility of engine intake area control using an SMA wire actuator under the proposed design.

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes (신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서)

  • Kim, Kang-Hyun;Cha, Jae-Gyeong;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

The seismic performance of steel pipe-aeolian sand recycled concrete columns

  • Yaohong Wang;Kangjie Chen;Zhiqiang Li;Wei Dong;Bin Wu
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • To investigate the seismic performance of steel pipe-aeolian sand recycled concrete columns, this study designed and produced five specimens. Low-cycle repeated load tests were conducted while maintaining a constant axial compression ratio. The experiment aimed to examine the impact of different aeolian sand replacement rates on the seismic performance of these columns. The test results revealed that the mechanical failure modes of the steel pipe-recycled concrete column and the steel pipe-aeolian sand recycled concrete column were similar. Plastic hinges formed and developed at the column foot, and severe local buckling occurred at the bottom of the steel pipe. Interestingly, the bulging height of the damaged steel pipe was reduced for the specimen mixed with an appropriate amount of wind-deposited sand under the same lateral displacement. The hysteresis curves of all five specimens tested were relatively full, with no significant pinching phenomenon observed. Moreover, compared to steel tube-recycled concrete columns, the steel tube-aeolian sand recycled concrete columns exhibited improved seismic energy dissipation capacity and ductility. However, it was noted that as the aeolian sand replacement rate increased, the bearing capacity of the specimen increased first and then decreased. The seismic performance of the specimen was relatively optimal when the aeolian sand replacement rate was 30%. Upon analysis and comparison, the damage analysis model based on stiffness and energy consumption showed good agreement with the test results and proved suitable for evaluating the damage degree of steel pipe-wind-sand recycled concrete structures.

Reliability of Muscle Evaluation with a Tactile Sensor System (촉각센서를 이용한 근육평가의 신뢰도 조사)

  • Oh, Young-Rak;Lee, Dong-Ju;Kim, Sung-Hwan;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.337-344
    • /
    • 2005
  • A tactile sensor employs a piezoelectric element to detect contact frequency shifts and thereby measure the stiffness or softness of material such as tissue, which allows the sensor to be used in many fields of research for urology, cardiology, gynecology, sports medicine and caner detection and especially for cosmetics and skin care. In this study, reliability of the tactile sensor system was investigated with its manual application to the muscles susceptible to temporomandibular disorders. Stiffness and elasticity of anterior temporalis, masseter and trapezius muscles were calibrated bilaterally from 5 healthy men with an average of 24.5$\pm$0.94 years. The tactile sensor used in this study had a computer-controlled and motor-driven sensor unit which automatically pressed down on the skin surface over the muscles being measured and retracted, thereby providing the hysteresis curve. The slope of the tangent of the hysteresis curve (${\Delta}f/{\Delta}x$) is defined as stiffness of the muscle being measured and the distance between the two parts of the curve as its elasticity. To determine inter-examiner reliability, all the measurements were performed by the two examiners A and B, respectively and the same examination were repeated with an interval of 2 days for intra-examiner reliability. The results from this study demonstrated high reliability in measuring stiffness and elasticity of anterior temporalis, masseter and upper trapezius muscles using a tactile sensor system. It is suggested that the tactile sensor system can be a highly reproducible and effective instrument for quantitative evaluation of the muscle in head and neck region.

Magnetic Properties of Monolayer-thiciness InP(001)(2×4) Reconstruction Surface (InP(001)(2×4)재구성된 표면 위에 원자층 단위로 증착된 Co 박막의 자성 특성)

  • Park, Yong-Sung;Jeong, Jong-Ryul;Lee, Jeong-Won;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.89-94
    • /
    • 2004
  • We have investigated magnetic properties of monolayer (ML)-thickness Co film deposited on InP(2${\times}$4) reconstruction surface using in situ Surface Magneto-Optical Kerr Effects (SMOKE) measurement system. InP(2${\times}$4) reconstruction surface, obtained by repeated sputtering and annealing, was confirmed by reflection hish energy electron diffraction (RHEED) and scanning tunneling microscope (STM) measurements. From both longitudinal and polar SMOKE measurements, we have observed three distinguishable regions showing different magnetic properties depending on the Co thickness. In the Co film thickness smaller than 7 $m\ell$, no SMOKE signal was detected. In the following thickness between 8 $m\ell$ and 15 $m\ell$, both longitudinal and polar Kerr hysteresis loops were observed, which implies a metastable phase coexisted of in-plane and perpendicular anisotropies. In the film thickness larger than 16 $m\ell$, only longitudinal MOKE signal without polar signal was detected, which implies existence of in-plane anisotropy in this thickness region.

The Study on the Slurry Wear Behavior of Rubber Vulcanizates (고무 소재의 슬러리 마모 거동에 관한 연구)

  • Chung, Kyung-Ho;Hong, Young-Keun;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.70-77
    • /
    • 2011
  • A new piece of test equipment, the slurry wear tester (SWT), was proposed in this study to evaluate the wear behavior of rubber vulcanizate in environmental contact with slurry. Natural rubber (NR) and chloroprene rubber (CR) were chosen as the basic matrices to test the slurry wear. The fluids used to fill the chamber of the SWT were 35% HCl and NaCl solution. The Akron abrasion test was used for comparison with SWT. According to the results of the Akron abrasion test, CR vulcanizate abraded more rapidly than NR vulcanizate under same test condition. It was found that the hysteresis of rubber was key factor contribute to the wear behavior. However, the slurry wear rate of the NR and CR vulcanizates did not change significantly, even with changes in the concentration of acid and the immersion time in both HCl and NaCl solutions; the fluid decreased the friction between the abrasive paper and the specimen. It also reduced the heat generated from repeated deformation and wear debris at the surface of the SWT's abrasion arm. Thus, these phenomena affected the wear behavior of rubber vulcanizate and caused different results in the conventional Akron abrasion test. This outcome could have resulted in an incorrect analysis if the slurry wear behavior of the rubber vulcanizate was estimated by the conventional abrasion tests, which are operated under dry conditions.