DOI QR코드

DOI QR Code

Thermal stability and Young's modulus of mechanically exfoliated flexible mica

  • Received : 2018.05.24
  • Accepted : 2018.09.04
  • Published : 2018.12.31

Abstract

In recent years, mica has been successfully used as a substrate for the growth of flexible epitaxial ferroelectric oxide thin films. Here, we systematically investigated the flexibility of mica in terms of its thickness, repeated bending/unbending, extremely hot/cold conditions, and successive thermal cycling. A $20-{\mu}m-thick$ sheet of mica is flexible even up to the bending radius of 5 mm, and it is durable for 20,000 cycles of up- and down-bending. In addition, the mica shows flexibility at 10 and 773 K, and thermal cycling stability for the temperature variation of ca. 400 K. Compared with the widely used flexible polyimide, mica has a significantly higher Young's modulus (ca. 5.4 GPa) and negligible hysteresis in the force-displacement curve. These results show that mica should be a suitable substrate for piezoelectric energy-harvesting applications of ferroelectric oxide thin films at extremely low and high temperatures.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J.F. Scott, Ferroelectric Memories, Springer-Verlag, Berlin Heidelberg, 2000.
  2. D. Damjanovic, P. Muralt, N. Setter, Ferroelectric sensors, IEEE Sens. J. 1 (2001) 191. https://doi.org/10.1109/JSEN.2001.954832
  3. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci. 7 (2014) 25. https://doi.org/10.1039/C3EE42454E
  4. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
  5. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: review of materials, properties, and applications, J. Appl. Phys. 100 (2006) 109901. https://doi.org/10.1063/1.2393042
  6. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.‐M. Tao, Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications, Adv. Mater. 26 (2014) 5310. https://doi.org/10.1002/adma.201400633
  7. A.I. Kingon, S. Srinivasan, Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications, Nat. Mater. 4 (2005) 233. https://doi.org/10.1038/nmat1334
  8. H.G. Yeo, X. Ma, C. Rahn, S. Trolier-McKinstry, Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils, Adv. Funct. Mater. 26 (2016) 5940. https://doi.org/10.1002/adfm.201601347
  9. Y.J. Ko, D.Y. Kim, S.S. Won, C.W. Ahn, I.W. Kim, A.I. Kingon, S.-H. Kim, J.-H. Ko, J.H. Jung, Flexible $Pb(Zr_{0.52}Ti_{0.48})O_3$ films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments, ACS Appl. Mater. Interfaces 8 (2016) 6504. https://doi.org/10.1021/acsami.6b00054
  10. Y. Bitla, Y.-H. Chu, MICAtronics: a new platform for flexible X-tronics, FlatChem 3 (2017) 26. https://doi.org/10.1016/j.flatc.2017.06.003
  11. J. Jiang, Y. Bitla, C.-W. Huang, T.H. Do, H.-J. Liu, Y.-H. Hsieh, C.-H. Ma, C.-Y. Jang, Y.-H. Lai, P.-W. Chiu, W.-W. Wu, Y.-C. Chen, Y.-C. Zhou, Y.-H. Chu, Flexible ferroelectric element based on van der Waals heteroepitaxy, Sci. Adv. 3 (2017) e1700121. https://doi.org/10.1126/sciadv.1700121
  12. B. Tang, A.H.W. Ngan, J.B. Pethica, A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy, Nanotechnology 19 (2008) 495713. https://doi.org/10.1088/0957-4484/19/49/495713
  13. J.-J. Liang, R.C. Hawthorne, Rietveld Refinement of micaceous materials: muscovite-2M1, a comparison with single-crystal structure refinement, Can. Mineral. 34 (1996) 115.
  14. D. Wang, G. Yuan, G. Hao, Y. Wang, All-inorganic flexible piezoelectric energy harvester enabled by two dimensional mica, Nano Energy 43 (2018) 351. https://doi.org/10.1016/j.nanoen.2017.11.037
  15. S.S. Kim, T.V. Khai, V. Kulish, Y.-H. Kim, H.G. Na, A. Katoch, M. Osada, P. Wu, H.W. Kim, Tunable bandgap narrowing induced by controlled molecular thickness in 2D mica nanosheets, Chem. Mater. 27 (2015) 4222. https://doi.org/10.1021/cm504802j
  16. Y.B. Tian, L. Zhou, Z.W. Zhong, H. Sato, J. Shimizu, Finite element analysis of deflection and residual stress on machined ultra-thin silicon wafers, Semicond. Sci. Technol. 26 (2011) 105002. https://doi.org/10.1088/0268-1242/26/10/105002
  17. J.H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou, Z.L. Wang, Lead-free $NaNbO_3$ nanowires for a high output piezoelectric nanogenerator, ACS Nano 5 (2011) 10041. https://doi.org/10.1021/nn2039033
  18. R.E. Mahaffy, C.K. Shih, F.C. MacKintosh, J. Kas, Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett. 85 (2000) 880. https://doi.org/10.1103/PhysRevLett.85.880
  19. L.E. McNeil, M. Grimsditch, Elastic moduli of muscovite mica, J. Phys. Condens. Matter 5 (1993) 1681. https://doi.org/10.1088/0953-8984/5/11/008
  20. W.S. Wong, A. Sallelo, Flexible Electronics: Materials and Applications, Springer, New York, 2009.
  21. Y. Shi, Y. Wua, C. Sun, M. Huo, Preparation and characterization of crystalline titania film on polyimide substrate by SILAR, Appl. Surf. Sci. 317 (2014) 393. https://doi.org/10.1016/j.apsusc.2014.08.120
  22. G. Yi, Z. Wu, M. Sayer, Preparation of $Pb(Zr,Ti)O_3$ thin films by sol gel processing: electrical, optical, and electrooptic properties, J. Appl. Phys. 64 (1988) 2717. https://doi.org/10.1063/1.341613

Cited by

  1. Lead-free (K,Na)NbO3 Thick Films for Flexible Non-volatile Memory Applications vol.77, pp.9, 2020, https://doi.org/10.3938/jkps.77.780
  2. Flexible, All‐Inorganic CsPbBr 3 Perovskite Solar Cells Tailored by Heat‐resistant Muscovite Substrates vol.14, pp.6, 2021, https://doi.org/10.1002/cssc.202002796