Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.09.002

Thermal stability and Young's modulus of mechanically exfoliated flexible mica  

Jin, Da Woon (Department of Physics, Inha University)
Ko, Young Joon (Department of Physics, Inha University)
Kong, Dae Sol (Department of Physics, Inha University)
Kim, Hyun Ki (Department of Physics, Inha University)
Ha, Jae-Hyun (Department of Emerging Materials Science, DGIST)
Lee, Minbaek (Department of Physics, Inha University)
Hong, Jung-Il (Department of Emerging Materials Science, DGIST)
Jung, Jong Hoon (Department of Physics, Inha University)
Abstract
In recent years, mica has been successfully used as a substrate for the growth of flexible epitaxial ferroelectric oxide thin films. Here, we systematically investigated the flexibility of mica in terms of its thickness, repeated bending/unbending, extremely hot/cold conditions, and successive thermal cycling. A $20-{\mu}m-thick$ sheet of mica is flexible even up to the bending radius of 5 mm, and it is durable for 20,000 cycles of up- and down-bending. In addition, the mica shows flexibility at 10 and 773 K, and thermal cycling stability for the temperature variation of ca. 400 K. Compared with the widely used flexible polyimide, mica has a significantly higher Young's modulus (ca. 5.4 GPa) and negligible hysteresis in the force-displacement curve. These results show that mica should be a suitable substrate for piezoelectric energy-harvesting applications of ferroelectric oxide thin films at extremely low and high temperatures.
Keywords
Flexible mica; Thermal stability; Young's modulus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.F. Scott, Ferroelectric Memories, Springer-Verlag, Berlin Heidelberg, 2000.
2 D. Damjanovic, P. Muralt, N. Setter, Ferroelectric sensors, IEEE Sens. J. 1 (2001) 191.   DOI
3 C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci. 7 (2014) 25.   DOI
4 N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: review of materials, properties, and applications, J. Appl. Phys. 100 (2006) 109901.   DOI
5 Y.J. Ko, D.Y. Kim, S.S. Won, C.W. Ahn, I.W. Kim, A.I. Kingon, S.-H. Kim, J.-H. Ko, J.H. Jung, Flexible $Pb(Zr_{0.52}Ti_{0.48})O_3$ films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments, ACS Appl. Mater. Interfaces 8 (2016) 6504.   DOI
6 W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.‐M. Tao, Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications, Adv. Mater. 26 (2014) 5310.   DOI
7 A.I. Kingon, S. Srinivasan, Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications, Nat. Mater. 4 (2005) 233.   DOI
8 H.G. Yeo, X. Ma, C. Rahn, S. Trolier-McKinstry, Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils, Adv. Funct. Mater. 26 (2016) 5940.   DOI
9 Y. Bitla, Y.-H. Chu, MICAtronics: a new platform for flexible X-tronics, FlatChem 3 (2017) 26.   DOI
10 J. Jiang, Y. Bitla, C.-W. Huang, T.H. Do, H.-J. Liu, Y.-H. Hsieh, C.-H. Ma, C.-Y. Jang, Y.-H. Lai, P.-W. Chiu, W.-W. Wu, Y.-C. Chen, Y.-C. Zhou, Y.-H. Chu, Flexible ferroelectric element based on van der Waals heteroepitaxy, Sci. Adv. 3 (2017) e1700121.   DOI
11 B. Tang, A.H.W. Ngan, J.B. Pethica, A method to quantitatively measure the elastic modulus of materials in nanometer scale using atomic force microscopy, Nanotechnology 19 (2008) 495713.   DOI
12 B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
13 Y.B. Tian, L. Zhou, Z.W. Zhong, H. Sato, J. Shimizu, Finite element analysis of deflection and residual stress on machined ultra-thin silicon wafers, Semicond. Sci. Technol. 26 (2011) 105002.   DOI
14 J.-J. Liang, R.C. Hawthorne, Rietveld Refinement of micaceous materials: muscovite-2M1, a comparison with single-crystal structure refinement, Can. Mineral. 34 (1996) 115.
15 D. Wang, G. Yuan, G. Hao, Y. Wang, All-inorganic flexible piezoelectric energy harvester enabled by two dimensional mica, Nano Energy 43 (2018) 351.   DOI
16 S.S. Kim, T.V. Khai, V. Kulish, Y.-H. Kim, H.G. Na, A. Katoch, M. Osada, P. Wu, H.W. Kim, Tunable bandgap narrowing induced by controlled molecular thickness in 2D mica nanosheets, Chem. Mater. 27 (2015) 4222.   DOI
17 J.H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chou, Z.L. Wang, Lead-free $NaNbO_3$ nanowires for a high output piezoelectric nanogenerator, ACS Nano 5 (2011) 10041.   DOI
18 R.E. Mahaffy, C.K. Shih, F.C. MacKintosh, J. Kas, Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells, Phys. Rev. Lett. 85 (2000) 880.   DOI
19 L.E. McNeil, M. Grimsditch, Elastic moduli of muscovite mica, J. Phys. Condens. Matter 5 (1993) 1681.   DOI
20 W.S. Wong, A. Sallelo, Flexible Electronics: Materials and Applications, Springer, New York, 2009.
21 G. Yi, Z. Wu, M. Sayer, Preparation of $Pb(Zr,Ti)O_3$ thin films by sol gel processing: electrical, optical, and electrooptic properties, J. Appl. Phys. 64 (1988) 2717.   DOI
22 Y. Shi, Y. Wua, C. Sun, M. Huo, Preparation and characterization of crystalline titania film on polyimide substrate by SILAR, Appl. Surf. Sci. 317 (2014) 393.   DOI