• Title/Summary/Keyword: Renewable technology

Search Result 1,518, Processing Time 0.031 seconds

Characteristics of Open-Loop Current Sensor with Temperature Compensation Circuit (온도보상회로를 부착한 개방형 전류측정기의 특성)

  • Ku, Myung-Hwan;Park, Ju-Gyeong;Cha, Guee-Soo;Kim, Dong-Hui;Choi, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8306-8313
    • /
    • 2015
  • Open-type current sensors have been commonly used for DC motor controller, AC variable controller and Uninterruptible Power Supply. Recently they have begun to be used more widely, as the growth of renewable energy and smart-grid in power system. Considering most of the open-type current sensors are imported, developing the core technology needed to produce open-type current sensors is required. This paper describes the development and test results of open-type current sensors. Design of C type magnetic core, selection and test of a Hall sensor, design of current source circuit and signal conditioning circuit are described. 100A class DIP(Dual In-line Package) type and SMD(Surface Mount Devide) type open-type current sensors was made and tested. Test results show that the developed open-type current sensor satisfies the accuracy requirement of 2% and linearity requirement of 2% at 100 A of DC and AC current of 60Hz. Temperature compensation was carried out by using a temperature compensation circuit with NTC(Negative Temperature Coefficient) thermistor and the effect of the temperature compensation are described.

A Study on Properites of PV Solar cell AZO thin films post-annealing by RTP technique (RTP 공정을 통한 태양전지용 AZO 박막의 후열처리 특성연구)

  • Yang, Hyeon-Hun;Kim, Han-Wool;Han, Chang-Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hea-Deok;Lee, Suk-Ho;Back, Su-Ung;Na, Kil-Ju;Jeong, Woon-Jo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.127.1-127.1
    • /
    • 2011
  • In this paper, ZnO:Al thin films with c-axis preferred orientation were prepared on Soda lime glass substrates by RF magnetron sputtering technique. AZO thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the AZO were vapor-deposited in the named order. It is well-known that post-annealing is an important method to improve crystal quality. For the annealing process, the dislocation nd other defects arise in the material and adsorption/decomposition occurs. The XRD patterns of the AZO films deposited with grey theory prediction design, annealed in a vacuum ambient($2.0{\times}10-3$Torr)at temperatures of 200, 300, 400 and $500^{\circ}C$ for a period of 30min. The diffraction patterns of all the films show the AZO films had a hexagonal wurtzite structure with a preferential orientation along the c-axis perpendicular to the substrate surface. As can be seen, the (002)peak intensities of the AZO films became more intense and sharper when the annealing temperature increased. On the other hand, When the annealing temperature was $500^{\circ}C$ the peak intensity decreased. The surface morphologies and surface toughness of films were examined by atomic force microscopy(AFM, XE-100, PSIA). Electrical resistivity, Gall mobility and carrier concentration were measured by Hall effect measuring system (HL5500PC, Accent optical Technology, USA). The optical absorption spectra of films in the ultraviolet-visibleinfrared( UV-Vis-IR) region were recorder by the UV spectrophotometer(U-3501, Hitachi, Japan). The resistivity, carrier concentration, and Hall mobility of ZnS deposited on glass substrate as a function of post-annealing.

  • PDF

Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties (PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가)

  • Chung, Kyeong-Woo;Kim, Se-Yung;Yang, Yoo-Chang;Ahn, Seung-Gyun;Jeon, Yoo-Taek;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF

An Experimental Study for Predicting the Electric Power of the Coaxial Accelerator Type Wave Power Generator (동축 가속형 파력 발전장치의 전력량 예측을 위한 실험 연구)

  • Chung, Jaeho;Shin, Dong Min;Kim, Yuncheol;Moon, Byung Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.19-24
    • /
    • 2020
  • The interest in renewable energy is increasing due to the depletion of fossil fuels. In particular, active research on wave power, which is highly predictable and abundant, is being conducted. The coaxial accelerator-type wave power generator used in this study was designed to improve the power generation efficiency by converting bidirectional linear motion into a rotational force. In an offshore engineering basin, waves were generated, and case tests were performed according to the wave period and wave height. The experimental results were verified by the theoretical method related to the frequency response, and the overall trend was confirmed to be consistent. These results are expected to be useful in estimating the power of wave generators and designing parameters to improve the efficiency of wave energy in the design stage before manufacturing. In addition, the manufacturer can predict the wave energy efficiency of wave generators, which can reduce the development time and cost by preventing trial and error processes.

Comparative assessment of age, growth and food habit of the black-chinned tilapia, Sarotherodon melanotheron (Rüppell, 1852), from a closed and open lagoon, Ghana

  • Zuh, Cephas Kwesi;Abobi, Seth Mensah;Campion, Benjamin Betey
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.12
    • /
    • pp.31.1-31.12
    • /
    • 2019
  • Background: The black-chinned tilapia, Sarotherodon melanotheron, is the most abundant fish species in the Nakwa (an open lagoon) and Brenu (a closed lagoon) in the Central Region of Ghana. Aspects of the life history characteristics and the ecology of the fish populations in both lagoons were studied to assess the bio-ecological status of this important resource. Methods: Fish samples were obtained from fishermen that fish on the Nakwa and Brenu lagoons using cast, drag and gill nets. The age of the fish was assessed from otoliths analysis and its growth modelled following the von Bertalanffy growth function. Morphometric characteristics of the fish populations were analysed using power regression and ANOVA for parameters comparisons, and Student's t test to determine whether species grew isometrically. The percentage occurrence method was used to analyse the stomach contents of the fish. Results: A total of 382 fish samples from both lagoons were measured, comprising 209 from Nakwa lagoon and 176 from Brenu lagoon. The size and weight of fish samples ranged between 3.9-11.5 cm total length and 1.0-27.3 g for Nakwa Lagoon and 5.6-12.8 cm total length and 3.2-29.8 g for the Brenu Lagoon. The estimated von Bertalanffy growth parameters were L∞ = 12.04 cm and K = 2.76/year for the Nakwa Lagoon samples and L∞ = 13.44 cm and K = 3.27/year for Brenu Lagoon samples. Daily otolith incremental rate ranged from 0.01-0.03 mm per day to 0.01-0.02 mm per day for Nakwa and Brenu lagoons, respectively. Stomach content analysis of the fish samples revealed that the species are planktivorous and the range of food varied between the lagoons. Green algae were the most prevalent food item in the stomachs of the fish samples from Nakwa with the frequency of 69% whilst diatoms (80.5%) were most prevalent phytoplanktonic food item for the fish in Brenu lagoon. Conclusions: The estimates of asymptotic length for the species in both lagoons are close to known values of the species length at first sexual maturity and points to intensive fishing pressure. As a consequence, a comprehensive sample-based survey is required in both lagoons to derive estimates of management reference points. The results of the stomach content analysis are beneficial to the construction of diet matrix for ecosystem models of the two systems.

Growth Evaluation of Lipid Production Microalgae Scenedesmus obliquus using Raman Spectroscopy (라만 분광법을 이용한 지질생산 미세조류 Scenedesmus obliquus 성장 평가)

  • Yoo, Yong Jin;Lee, Geon Woo;Baek, Dong Hyun;Lee, Jin Woo;Kim, Ho Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.223-229
    • /
    • 2020
  • Biodiesel produced using microorganisms, which are recognized as the third-generation biomass, is among the various known renewable energy sources that can replace fossil fuels used in conventional transportation. Scenedesmus obliquus has been identified as an excellent species for biodiesel production, as it grows faster and can accumulate up to 40-50 percent of the dry cell weight. Enhancing production using S. obliquus requires measuring the cell mass for controlling the cultivation process. In the current study, S. obliquus was cultured for 75 days, and growth changes of the microalgae were measured by absorbance, microscopic imaging, and Raman spectroscopy. Between days 60 to 75 of culture, the change in absorbance was observed to be less than 3%, whereas the number of microalgae observed microscopically was more than three times higher. Moreover, the Raman spectroscopy results showed three strong peak values of β-carotene at 997 cm-1, 1148 cm-1, and 1515 cm-1, with peak values of β-carotene showing greater than 3-fold increase during the culture period. Therefore, we predict that application of Raman spectroscopy will help in identifying the growth elements and growth degree in microalgae culture during increased biomass production.

Microbial Diversity in Three-Stage Methane Production Process Using Food Waste (음식물 쓰레기를 이용한 3단계 메탄생산 공정의 미생물 다양성)

  • Nam, Ji-Hyun;Kim, Si-Wouk;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Anaerobic digestion is an alternative method to digest food wastes and to produce methane that can be used as a renewable energy source. We investigated bacterial and archaeal community structures in a three-stage methane production process using food wastes with concomitant wastewater treatment. The three-stage methane process is composed of semianaerobic hydrolysis/acidogenic, anaerobic acidogenic, and strictly anaerobic methane production steps in which food wastes are converted methane and carbon dioxide. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library and quantitative real-time PCR. The major eubacterial population of the three-stage methane process was belonging to VFA-oxidizing bacteria. The archaeal community consisted mainly of two species of hydrogenotrophic methanogen (Methanoculleus). Family Picrophilaceae (Order Thermoplasmatales) was also observed as a minor population. The predominance of hydrogenotrophic methanogen suggests that the main degradation pathway of this process is different from the classical methane production systems that have the pathway based on acetogenesis. The domination of hydrogenotrophic methanogen (Methanoculleus) may be caused by mesophilic digestion, neutral pH, high concentration of ammonia, short HRT, and interaction with VFA-oxidizing bacteria (Tepidanaerobacter etc.).

A Study for Promotion Strategies of the Smart Grid in Convergence technology (융합기술을 활용한 스마트그리드 촉진전략에 관한 연구)

  • Mun, Jeong-Min;Leem, Wook-Bin;Cho, Sae-Hong
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.513-520
    • /
    • 2014
  • The Smart Grid is next-generation power system materialized Convergence and Integration of power technologies and Information Technologies. And this system is the next generation power system optimizing energy efficiency via real-time information exchanges grafting the information technologies upon present power networks which are web-net. The introduction of smart grid can be embodied for latitude, distributed and cooperated network by inter-active exchange of energy information between electrical power provider and consumer previous uni-directional electrical power supplement. Therefore in this paper, we proposed Convergence technologies - Smart power grid, Smart Place, Smart Renewable and Smart Electricity Service - to make smart-grid succeed via analyzing the datum. And we scoped on Convergence and Integration technologies, which could be used for smart-power-grid that is most important factor to replace previous power industries. And we brought out the expecting industrialize timing and interesting aspects and analyzed the result with survey of professional worker from institute, research center, power plant and business of power industries. And proposed the essential policies for the government and power-control-business companies based on the datum and survey output.

A Review of Greenhouse Energy Management by Using Building Energy Simulation (BES 프로그램을 이용한 온실의 에너지 관리)

  • Rasheed, Adnan;Lee, Jong Won;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.317-325
    • /
    • 2015
  • This paper attempts to present a review about simulation of different greenhouse parameters and energy supplying techniques by using building energy simulation, to find out the optimal solution for keeping greenhouse microclimate favorable for the crop production. The objectives of conducting this study were, to describe the various energy systems and techniques used for the greenhouse energy management and efficiency analysis of these technologies by using building energy simulation. We describe different models to understand the behavior of the energy saving technologies with respect to the resources available and different outside climatic conditions. We identified main features of the building energy simulation software, that enable users, to simulate hybrid agricultural building projects by using user defined parameters. At the end of the paper we draw some important concluding remarks on the basis of reviewing all the investigators contributions for the developments of simulation model of agricultural greenhouse energy management, using a building energy simulation software specifically TRNSYS. In conclusion, this paper provides information that TRNSYS have great potential for agricultural buildings energy simulation along with the renewable energy resources and energy saving techniques. This review paper provides aid to greenhouse researcher and energy planner for the future studies of greenhouses energy planning.

Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction (회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수)

  • Kang, Ho-Cheol;Shin, Sung Soon;Kim, Doo Han;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.630-634
    • /
    • 2018
  • The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of $120-350^{\circ}C$ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of $C_{12}$, $C_{14}$, $C16$ and $C_{18}$ paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components ($C_7-C_{24}$) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.