DOI QR코드

DOI QR Code

A Review of Greenhouse Energy Management by Using Building Energy Simulation

BES 프로그램을 이용한 온실의 에너지 관리

  • Rasheed, Adnan (Department of Agricultural Engg., Kyungpook National Univ.) ;
  • Lee, Jong Won (Institute Agricultural Science & Technology, Kyungpook National University) ;
  • Lee, Hyun Woo (Department of Agricultural Engg., Kyungpook National Univ.)
  • Received : 2015.11.18
  • Accepted : 2015.12.22
  • Published : 2015.12.31

Abstract

This paper attempts to present a review about simulation of different greenhouse parameters and energy supplying techniques by using building energy simulation, to find out the optimal solution for keeping greenhouse microclimate favorable for the crop production. The objectives of conducting this study were, to describe the various energy systems and techniques used for the greenhouse energy management and efficiency analysis of these technologies by using building energy simulation. We describe different models to understand the behavior of the energy saving technologies with respect to the resources available and different outside climatic conditions. We identified main features of the building energy simulation software, that enable users, to simulate hybrid agricultural building projects by using user defined parameters. At the end of the paper we draw some important concluding remarks on the basis of reviewing all the investigators contributions for the developments of simulation model of agricultural greenhouse energy management, using a building energy simulation software specifically TRNSYS. In conclusion, this paper provides information that TRNSYS have great potential for agricultural buildings energy simulation along with the renewable energy resources and energy saving techniques. This review paper provides aid to greenhouse researcher and energy planner for the future studies of greenhouses energy planning.

본 논문에서는 온실작물 생육에 적절한 미기상환경을 제공하기 위한 최적의 조건을 찾아내기 위하여 TRNSYS 프로그램을 이용하여 온실의 구조 및 환경인자와 에너지공급기술들에 대하여 시뮬레이션을 실시한 연구논문들을 분석하였다. 본 연구의 목적은 온실에너지 관리를 위해 사용되고 있는 여러 가지 에너지시스템과 기술들에 관하여 검토하고 이들에 대해 TRNSYS 시뮬레이션을 통해 실시한 효율분석에 관하여 검토하는 것이다. 사용가능한 에너지자원과 다양한 외부기상조건에 따른 에너지절감기술들의 성능을 분석하기 위한 여러가지 시뮬레이션 모델들에 대해서도 검토하였다. 사용자가 정의하는 인자들을 사용하여 하이브리드 농업시설을 시뮬레이션 할 수 있는 TRNSYS 프로그램의 주요 구조들을 찾아내었다. 문헌검토에서 얻어진 결과를 토대로 TRNSYS 프로그램을 이용하여 온실의 에너지관리를 위한 시뮬레이션 모델을 개발하는데 필요한 몇 가지 중요한 결론들을 도출하였다. TRNSYS 프로그램은 앞으로 온실의 에너지 시뮬레이션을 수행하는데 크게 활용될 것으로 기대된다.

Keywords

References

  1. Adaro, J.A., P.D. Galimberti, A.I. Lema, A.L. Fasulo and J.R. Barral. 1999. Geothermal contribution to greenhouse heating. Applied Energy. 64(1): 241-249. https://doi.org/10.1016/S0306-2619(99)00049-5
  2. Arinze, E.A., G.J. Schoenau and R.W. Besant. 1986. Experimental and computer performance evaluation of a movable thermal insulation for energy conservation in greenhouses. Journal of Agricultural Engineering Research. 34(2): 97-113. https://doi.org/10.1016/S0021-8634(86)80003-8
  3. Asdrubali, F., F. Cotana and A. Messineo. 2012. On the evaluation of solar greenhouse efficiency in building simulation during the heating period. Energies. 5(6): 1864. https://doi.org/10.3390/en5061864
  4. Attar, I., N. Naili, N. Khalifa, M. Hazami and A. Farhat. 2013. Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management. 70: 163-173. https://doi.org/10.1016/j.enconman.2013.02.017
  5. Aye, L., R.J. Fuller and A. Canal. 2010. Evaluation of a heat pump system for greenhouse heating. International Journal of Thermal Sciences. 49(1): 202-208. https://doi.org/10.1016/j.ijthermalsci.2009.07.002
  6. Bronchart, F., M. De Paepe, J. Dewulf, E. Schrevens and P. Demeyer. 2013. Thermodynamics of greenhouse systems for the northern latitudes: Analysis, evaluation and prospects for primary energy saving. Journal of Environmental Management. 119: 121-133. https://doi.org/10.1016/j.jenvman.2013.01.013
  7. Calise, F. 2012. High temperature solar heating and cooling systems for different mediterranean climates: Dynamic simulation and economic assessment. Applied Thermal Engineering. 32: 108-124. https://doi.org/10.1016/j.applthermaleng.2011.08.037
  8. Carlini, M. and S. Castellucci. 2010. Modelling and simulation for energy production parametric dependence in greenhouses. Mathematical Problems in Engineering. 2010.
  9. Carlini, M., T. Honorati and S. Castellucci. 2012. Photovoltaic greenhouses: Comparison of optical and thermal behaviour for energy savings. Mathematical Problems in Engineering. 2012.
  10. Carlini, M., D. Monarca, P. Biondi, T. Honorati and S. Castellucci. 2010. A simulation model for the exploitation of geothermal energy for a greenhouse in the viterbo province. Work safety and risk prevention in agro-food and forest systems. International Conference Ragusa SHWA. 16-18.
  11. Chargui, R., H. Sammouda and A. Farhat. 2012. Geothermal heat pump in heating mode: Modeling and simulation on trnsys. International Journal of Refrigeration. 35(7): 1824-1832. https://doi.org/10.1016/j.ijrefrig.2012.06.002
  12. Chung, M., J.-U. Park and H.-K. Yoon. 1998. Simulation of a central solar heating system with seasonal storage in korea. Solar Energy. 64(4-6): 163-178. https://doi.org/10.1016/S0038-092X(98)00101-7
  13. Curtis, R., J. Lund, B. Sanner, L. Rybach and G. Hellstrom. 2005. Ground source heat pumps-geothermal energy for anyone, anywhere: Current worldwide activity. Proceedings World Geothermal Congress, Antalya, Turkey. 24-29.
  14. Dalamagkidis, K., G. Saridakis and D. Kolokotsa 2005. Development of simulation algorithms for control scheme optimization in greenhouses. Dynastee Scientific Conference. Athens, Greece.
  15. Fitz-Rodriguez, E., C. Kubota, G.A. Giacomelli, M.E. Tignor, S.B. Wilson and M. Mcmahon. 2010. Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Computers and electronics in agriculture. 70(1): 105-116. https://doi.org/10.1016/j.compag.2009.09.010
  16. Hoes, H., J. Desmedt, K. Goen and L. Wittemans. 2008. The geskas project, closed greenhouse as energy source and optimal growing environment. International Society for Horticultural Science (ISHS), Leuven, Belgium, 1355-1362.
  17. Hollmuller, P. and B.M. Lachal 1998. Trnsys compatible moist air hypocaust model.
  18. Hyun, I.T., J.H. Lee, Y.B. Yoon, K.H. Lee and Y. Nam. 2014. The potential and utilization of unused energy sources for large-scale horticulture facility applications under korean climatic conditions. Energies (19961073). 7(8).
  19. Imtiaz Hussain, M., A. Ali and G.H. Lee. 2015. Performance and economic analyses of linear and spot fresnel lens solar collectors used for greenhouse heating in south korea. Energy. 90(2): 1522-1531. https://doi.org/10.1016/j.energy.2015.06.115
  20. Ishigami, Y., E. Goto, M. Watanabe, T. Takahashi and L. Okushima 2014. Development of a simulation model to evaluate environmental controls in a tomato greenhouse. Acta Horticulturae.
  21. Kalogirou, S.A. 2001. Use of trnsys for modelling and simulation of a hybrid pv-thermal solar system for cyprus. Renewable Energy. 23(2): 247-260. https://doi.org/10.1016/S0960-1481(00)00176-2
  22. Kolokotsa, D., G. Saridakis, K. Dalamagkidis, S. Dolianitis and I. Kaliakatsos. 2010. Development of an intelligent indoor environment and energy management system for greenhouses. Energy Conversion and Management. 51(1): 155-168. https://doi.org/10.1016/j.enconman.2009.09.007
  23. Kyriakarakos, G., A.I. Dounis, C. Alafodimos and D. Tseles 2011. Design of an autonomous agricultural installation. International Scientific Conference eRA-6. Greece.
  24. Lee, S.-B., I.-B. Lee, S.-W. Homg, I.-H. Seo, P.J. Bitog, K.-S. Kwon, T.-H. Ha and C.-P. Han. 2012. Prediction of greenhouse energy loads using building energy simulation (bes). Journal of The Korean Society of Agricultural Engineers. 54(3): 113-124 (in Korean). https://doi.org/10.5389/KSAE.2012.54.3.113
  25. Lund, J.W., D.H. Freeston and T.L. Boyd. 2005. Direct application of geothermal energy: 2005 worldwide review. Geothermics. 34(6): 691-727. https://doi.org/10.1016/j.geothermics.2005.09.003
  26. Lund, J.W., D.H. Freeston and T.L. Boyd. 2011. Direct utilization of geothermal energy 2010 worldwide review. Geothermics. 40(3): 159-180. https://doi.org/10.1016/j.geothermics.2011.07.004
  27. Marucci, A., M. Carlini, S. Castellucci and A. Cappuccini. 2013. Energy efficiency of a greenhouse for the conservation of forestry biodiversity. Mathematical Problems in Engineering. 2013: 7.
  28. Mashonjowa, E., F. Ronsse, J.R. Milford and J.G. Pieters. 2013. Modelling the thermal performance of a naturally ventilated greenhouse in zimbabwe using a dynamic greenhouse climate model. Solar Energy. 91: 381-393. https://doi.org/10.1016/j.solener.2012.09.010
  29. Opdam, J.J.G., G.G. Schoonderbeek, E.M.B. Heller and A. De Gelder. 2005. Closed greenhouse: A starting point for sustainable entrepreneurship in horticulture. International Society for Horticultural Science (ISHS), Leuven, Belgium, 517-524.
  30. Ozgener, O., A. Hepbasli, I. Dincer and M.A. Rosen. 2005. Modelling and assessment of ground-source heat pump systems using exergoeconomic analysis for building applications.
  31. Park, S.J., S.N. Lee and I.B. Lee. 2015. Calculation of heating and cooling loads for plastic film greenhouse utilizing power plant hot water by using building energy simulation. Proceedings of the Korean Society for Bio-Environment Control Conference. 24(2): 31-32 (in Korean).
  32. Patil, R. 2010. Impact of climate change on an r-2000 and a net zero energy home. Masters, Concordia University.
  33. Patil, R., U. Atre, M. Nicklas, G. Bailey and G. Power. 2013. An integrated sustainable food production and renewable energy system with solar & biomass chp. American Solar Energy Society.
  34. Serir, L., P.E. Bournet, H. Benmoussa and K. Mesmoudi. 2012. Thermal simulation of a greenhouse under a semi-arid climate. International Society for Horticultural Science (ISHS), Leuven, Belgium, 635-642.
  35. Sethi, V.P., K. Sumathy, C. Lee and D.S. Pal. 2013. Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies. Solar Energy. 96: 56-82. https://doi.org/10.1016/j.solener.2013.06.034
  36. Sinha, S. and S.S. Chandel. 2014. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews. 32: 192-205. https://doi.org/10.1016/j.rser.2014.01.035
  37. Vadiee, A. and V. Martin. 2012. Energy management in horticultural applications through the closed greenhouse concept, state of the art. Renewable and Sustainable Energy Reviews. 16(7): 5087-5100. https://doi.org/10.1016/j.rser.2012.04.022
  38. Vadiee, A. and V. Martin. 2013. Energy analysis and thermoeconomic assessment of the closed greenhouse - the largest commercial solar building. Applied Energy. 102: 1256-1266. https://doi.org/10.1016/j.apenergy.2012.06.051
  39. Vadiee, A. and V. Martin. 2014. Solar blind system- solar energy utilization and climate mitigation in glassed buildings. Energy Procedia. 57: 2023-2032. https://doi.org/10.1016/j.egypro.2014.10.067
  40. Voulgaraki, S.I. and G. Papadakis. 2008. Simulation of a greenhouse solar heating system with seasonal storage in greece. International Society for Horticultural Science (ISHS), Leuven, Belgium, 757-764.
  41. Xaman, J., I. Hernandez-Perez, J. Arce, G. Alvarez, L. Ramirez-Davila and F. Noh-Pat. 2014. Numerical study of earth-to-air heat exchanger: The effect of thermal insulation. Energy and Buildings. 85(0): 356-361. https://doi.org/10.1016/j.enbuild.2014.09.064
  42. Yang, S.-H., C.-G. Lee, W.-K. Lee, A.A. Ashtiani, J.-Y. Kim, S.-D. Lee and J.-Y. Rhee. 2012. Heating and cooling system for utilization of surplus air thermal energy in greenhouse and its control logic. Journal of Biosystems Engineering. 37(1): 19-27. https://doi.org/10.5307/JBE.2012.37.1.019
  43. Zhang, L., P. Xu, J. Mao, X. Tang, Z. Li and J. Shi. 2015. A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy. 156: 213-222. https://doi.org/10.1016/j.apenergy.2015.07.036