DOI QR코드

DOI QR Code

회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수

Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction

  • 강호철 (한국화학연구원 환경자원연구센터) ;
  • 신성순 (오메가에너지(주)) ;
  • 김두한 (청운대학교 화학공학과) ;
  • 김수진 (청운대학교 화학공학과)
  • Kang, Ho-Cheol (Environmental Resources Research Center, Korea Research Institutes of Chemical Technology) ;
  • Shin, Sung Soon (Division of Overseas Business, Omega Energy Inc.) ;
  • Kim, Doo Han (Department of Chemical Engineering, Chungwoon University) ;
  • Kim, Su Jin (Department of Chemical Engineering, Chungwoon University)
  • 투고 : 2018.05.03
  • 심사 : 2018.05.31
  • 발행 : 2018.10.10

초록

본 연구는 폐플라스틱 열분해유(WPPO) 유분의 품질향상의 일환으로 유분 중에 함유된 파라핀 성분의 회수를 회분 병류 4회 평형추출에 의해 검토했다. 원료로서는 WPPO를 단증류하여 회수한 유출온도 $120-350^{\circ}C$의 유분을, 용매로서는 소량의 물이 첨가된 디메틸포름아마이드(DMF) 용액을 각각 사용했다. 평형추출 횟수(n)와 파라핀 성분의 탄소수가 증가할수록 추잔유 중에 함유된 파라핀 성분의 농도는 증가했다. n = 4에서 회수된 추잔유 중의 $C_{12}$, $C_{14}$, $C_{16}$, $C_{18}$ 파라핀 성분의 농도는 원료의 농도에 비해 약 1.2, 1.5, 1.6, 1.8배 각각 높았다. 파라핀 성분의 회수율(추잔유 중의 잔류율)은 n가 증가할수록 급격히 감소하고 탄소수가 큰 성분일수록 급격히 증가했다. 또한, 원료 중에 함유된 전체 파라핀 성분($C_7-C_{24}$)에 대한 n = 1 - 4에서의 회수율을 예측 가능했다. 본 연구 결과를 통해 회수한 추잔유는 신재생에너지로 사용이 가능할 것이라 기대된다.

The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of $120-350^{\circ}C$ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of $C_{12}$, $C_{14}$, $C16$ and $C_{18}$ paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components ($C_7-C_{24}$) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.

키워드

참고문헌

  1. K. H. Lee, N. S. Noh, D. H. Shin, and Y. H. Seo, Comparison of plastics types for catalytic degradation of waste plastics into liquid product with FCC catalyst, Polym. Degrad. Stab., 78, 539-544 (2002). https://doi.org/10.1016/S0141-3910(02)00227-6
  2. Y. H. Seo, A role of antioxidant in the plastic-derived pyrolysis oil for the stabilization of oil composition, J. Korea Soc. Environ. Adm., 9, 331-339 (2003).
  3. D. C. Kim and J. K. Woo, Effect of thermal and catalytic decomposition conditions on decomposition lapse time and oil quality in plastic wastes into fuel oil, J. Korean Soc. Environ. Eng., 26, 1232-1237 (2004).
  4. K. Murata, Y. Hirano, Y. Sakata, and M. A. Uddin, Basic study on a continuous flow reactor for thermal degradation of polymers, J. Anal. Appl. Pyrolysis, 65, 71-90 (2002). https://doi.org/10.1016/S0165-2370(01)00181-4
  5. R. Moliner, M. Lazaro, and I. Suelves, Valorization of lube oil waste by pyrolysis, Energy Fuels, 11, 1165-1170 (1997). https://doi.org/10.1021/ef970025s
  6. C. G. Phae, Y. S. Kim, C. H. Jo, and U. S. Pyoun, Assessment of practical use of recycling oil from the pyrolysis of mixed waste plastics, J. Energy Eng., 14, 159-166 (2005).
  7. S. J. Kim, S. C. Kim, and J. Kawasaki, Separation and recovery of bicyclic aromatic components in the light cycle oil, Sep. Sci. Technol., 38, 179-199 (2003). https://doi.org/10.1081/SS-120016705
  8. T. A. Al-Sahhaf and E. Kapetanovic, Measurement and prediction of phase equilibria in the extraction of aromatics from naphtha reformate by tetraethylene glycol, Fluid Phase Equilib., 18, 271-285 (1996).
  9. G. M. Radwan, S. A. Al-Muhtaseb, and M. A. Fahim, Liquid-liquid equilibria for the extraction of aromatics from naphtha reformate by dimethylformamide/ethylene glycol mixed solvent, Fluid Phase Equilib., 29, 175-186 (1997).
  10. G. M. Radwan, S. A. Al-Muhtaseb, A. M. Dowaidar, and M. A. Fahim, Extraction of aromatics from petroleum naphtha reformate by a 1-cyclohexyl-2-pyrrplidone/ethylene carbonate mixed solvent, Ind. Eng. Chem. Res., 36, 414-418 (1997). https://doi.org/10.1021/ie960395o
  11. H. C. Kang and S. J. Kim, Comparison of methanol with formamide on separation of nitrogen heterocyclic compounds from model coal tar fraction by batch cocurrent multistage equilibrium extraction, Polycycl. Aromat. Compd., 36, 745-757 (2016). https://doi.org/10.1080/10406638.2015.1048894
  12. S. J. Kim, Y. J. Chun, and H. J. Jeong, Separation and recovery of indole from model coal tar fraction by batch cocurrent 5 stages equilibrium extraction, Appl. Chem. Eng., 18, 168-172 (2007).
  13. S. J. Kim and S. C. Kim, Separation of valuable bicyclic aromatic components from light cycle oil by an emulsion liquid membrane, Sep. Sci. Technol., 39, 1093-1109 (2004).
  14. R. Egashira and J. Kawasaki, Decrease in aromatics content in motor gasoline by O/W/O emulsion liquid membrane process, J. Japan Pet. Inst., 40, 107-114 (1997). https://doi.org/10.1627/jpi1958.40.107
  15. S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1143