• Title/Summary/Keyword: Renal tubular cell

Search Result 87, Processing Time 0.038 seconds

Decursin derivative-004 protect renal cell damage via p38 MAPK inhibition

  • Shin, Seon-Mi;Kim, Hyeon-Ho;Kim, Ik-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.337.1-337.1
    • /
    • 2002
  • Hypertrophy and the alteration of renal cell growth have been reported as early abnormality in diabetic nephropathy. However, the effects ot high PKCglucose and its action mechanism in renal proximal tubular cell (PTC) have not been elucidated. High glucose condition increases diacyl glycerol (DAG) and activates protein kinase C (PKC) in renal tubular cells. The PKC activates mitogen-activated protein kinases (MAPK), such as extracellular regulated kinase (ERK) and p38 MAPK. (omitted)

  • PDF

Effect of Baicalein on t-Butylhydroperoxide-Induced Cell Injury in Renal Tubular Epithelial Cells

  • Soon-Bee Jung
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.189-193
    • /
    • 2003
  • This study was undertaken to investigate the effect of baicalein, a major flavone component of Scutellaria balicalensis Georgi, on oxidant-induced cell injury in renal epithelial cells. Opossum kidney cells, an established proximal tubular epithelial cells, were used as a cell model of renal epithelial cells and t-butylhydroperoxide (tBHP) as an oxidant drug model. Cell viability was measured by MTT assay and lipid peroxidation was estimated by measuring the content of malondialdehyde, a product of lipid peroxidation. Exposure of cells to tBHP caused cell death and its effect was dose-dependent over concentration range of 0.1~1.0 mM. When cells were exposed to tBHP in the presence of various concentrations (0.1~10 $\mu$M) of baicalein, tBHP-induced cell death was prevented with a manner dependent of baicalein concentration. tBHP induced A TP depletion, which was significantly prevented by baicalein. Similarly, tBHP-induced DNA damage was prevented by baicalein. tBHP produced a marked increase in lipid peroxidation and its effect was completely inhibited by baicalein. These results indue ate that tBHP induces cell injury through a lipid peroxidation-dependent mechanism in renal epithelial cells, and baicalein prevented oxidant-induced cell injury via antioxidant action inhibiting lipid peroxidation. In addition, these results suggest that baicalein may be a candidate for development of drugs which are effective in preventing and treating renal diseases.

  • PDF

The Effects of Orostachys Japonicus A. Berger Aquacupuncture on Cell Death and DNA Damage Induced by H2O2 in Renal Tubular Cell (와송약침액(瓦松藥鍼液)이 신장세포(腎臟細胞)에서 H2O2에 의한 세포사망(細胞死亡) 및 DNA 손상(損傷)에 미치는 영향(影響))

  • Park, Sang-Won;Song, Choon-Ho
    • Journal of Acupuncture Research
    • /
    • v.18 no.1
    • /
    • pp.88-99
    • /
    • 2001
  • Objectives : This study was performed to determine if Orostachys japonicus A. Berger aquacupuncture (OjB) provides the protective effect against the loss of celi viability and DNA damage induced by oxidant in renal proximal tubular cells. Methods : The cell viability was evaluated by a MTT reduction assay and DNA damage was estimated by measuring double stranded DNA breaks in opossum kidney (OK) cells, an established proximal tubular cell line. Lipid peroxidation was determined by measuring malondialdehyde (MDA), a product of lipid peroxidation. Results : $H_2O_2$ increased the loss of cell viability in a time-dependent manner, which were prevented by 0.1% OjB. The protective effect of OjB was dose-dependent over concentration range of 0.05-0.5%. $H_2O_2$ caused ATP depletion and DNA damage, which were prevented by OjB and the hydrogen peroxide scavenger catalase. The loss of cell viability by $H_2O_2$ was not affected by the antioxidant DPPD, but lipid peroxidation by the oxidant was completely inhibited by DPPD. Conclusions : These data suggest that $H_2O_2$-induced death results from a lipid peroxidation-independent mechanism and the protective effect of OjB is not associated with its antioxidant activity.

  • PDF

Effect of Cisplatin on $Na^+/H^+$ Antiport in the OK Renal Epithelial Cell Line

  • Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.69-76
    • /
    • 1998
  • Cis-diamminedichloroplatinum II (cisplatin), an effective antitumor agent, induces acute renal failure by unknown mechanisms. To investigate direct toxic effects of cisplatin in the renal proximal tubular transport system, OK cell line was selected as a cell model and $Na^+/H^+$ antiport activity was evaluated during a course of cisplatin treatment. The cells grown to confluence were treated with cisplatin for 1 hour, washed, and incubated for up to 48 hours. At appropriate intervals, cells were examined for $Na^+/H^+$ antiport activity by measuring the recovery of intracellular pH (pHi) after acid loading. Cisplatin of less than 50 ${\mu}M$ induced no significant changes in cell viability in 24 hours, but it decreased the viability markedly after 48 hours. In cells exposed to 50 ${\mu}M$ cisplatin for 24 hours, the $Na^+-dependent$ pHi recovery (i.e., $Na^+/H^+$ antiport) was drastically inhibited with no changes in the $Na^+-independent$ recovery. Kinetic analysis of the $Na^+-dependent$ pHi recovery indicated that the Vmax was reduced, but the apparent Km was not altered. The cellular $Na^+$ and $K^+$ contents determined immediately before the transport measurement appeared to be similar in the control and cisplatin group, thus, the driving force for $Na^+-coupled$ transport was not different. These results indicate that cisplatin exposure impairs the $Na^+/H^+$ antiport capacity in OK cells. It is, therefore, possible that in patients treated with a high dose of cisplatin, proximal tubular mechanism for proton secretion (hence $HCO_3^-$ reabsorption) could be attenuated, leading to a metabolic acidosis (proximal renal tubular acidosis).

  • PDF

Ceramide Induces Cell Death through an ERK-dependent Mitochondrial Apoptotic Pathway in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.46-54
    • /
    • 2010
  • Ceramide induces cell death in a variety of cell types however, the underlying molecular mechanisms related to renal epithelial cells remain unclear. The present study was undertaken to determine the role of extracellular signal-regulated protein kinase (ERK) in ceramide-induced cell death in renal epithelial cells. An established renal proximal tubular cell line of opossum kidney (OK) cells was used for this research. Ceramide induced apoptotic cell death in these cells. Western blot analysis showed that ceramide induced activation of ERK. The ERK activation and cell death induced by ceramide were prevented by the ERK inhibitor PD98059. Ceramide caused cytochrome C release from mitochondria into the cytosol as well as activation of caspase-3. Both effects were prevented by PD98059. The ceramide-induced cell death was also prevented by a caspase inhibitor. These results suggest that ceramide induces cell death through an ERK-dependent mitochondrial apoptotic pathway in OK cells.

  • PDF

Alterations in Membrane Transport Function and Cell Viability Induced by ATP Depletion in Primary Cultured Rabbit Renal Proximal Tubular Cells

  • Lee, Sung-Ju;Kwon, Chae-Hwa;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • This study was undertaken to elucidate the underlying mechanisms of ATP depletion-induced membrane transport dysfunction and cell death in renal proximal tubular cells. ATP depletion was induced by incubating cells with 2.5 mM potassium cyanide(KCN)/0.1 mM iodoacetic acid(IAA), and membrane transport function and cell viability were evaluated by measuring $Na^+$-dependent phosphate uptake and trypan blue exclusion, respectively. ATP depletion resulted in a decrease in $Na^+$-dependent phosphate uptake and cell viability in a time-dependent manner. ATP depletion inhibited $Na^+$-dependent phosphate uptake in cells, when treated with 2 mM ouabain, a $Na^+$ pump-specific inhibitor, suggesting that ATP depletion impairs membrane transport functional integrity. Alterations in $Na^+$-dependent phosphate uptake and cell viability induced by ATP depletion were prevented by the hydrogen peroxide scavenger such as catalase and the hydroxyl radical scavengers(dimethylthiourea and thiourea), and amino acids(glycine and alanine). ATP depletion caused arachidonic acid release and increased mRNA levels of cytosolic phospholipase $A_2(cPLA_2)$. The ATP depletion-dependent arachidonic acid release was inhibited by $cPLA_2$ specific inhibitor $AACOCF_3$. ATP depletion-induced alterations in $Na^+$-dependent phosphate uptake and cell viability were prevented by $AACOCF_3$. Inhibition of $Na^+$-dependent phosphate uptake by ATP depletion was prevented by antipain and leupetin, serine/cysteine protease inhibitors, whereas ATP depletion-induced cell death was not altered by these agents. These results indicate that ATP depletion-induced alterations in membrane transport function and cell viability are due to reactive oxygen species generation and $cPLA_2$ activation in renal proximal tubular cells. In addition, the present data suggest that serine/cysteine proteases play an important role in membrane transport dysfunction, but not cell death, induced by ATP depletion.

Osteopontin and Developing Kidney (Osteopontin과 신장 발달)

  • Yim Hyung-Eun;Yoo Kee-Hwan
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Osteopontin (OPN) is a glycosylated phosphoprotein which mediates cell adhesion and migration, and is produced by bone, macrophages, endothelial cells, and epithelial cells. The many regulatory functions of OPN include bone remodeling, tumor invasion, wound repair, and promotion of cell survival. It is produced by renal tubular epithelial cells, and expression is upregulated in glomerulonephritis, hypertension, ischemic acute renal failure, renal ablation, and UUO. In this review, we discuss about osteopontin in general aspect, expression, role on the development and pathologic condition of neonatal kidney.

  • PDF

Therapeutic application of extracellular vesicles for various kidney diseases: a brief review

  • Lee, Sul A;Yoo, Tae Hyun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.3-10
    • /
    • 2022
  • Extracellular vesicles (EVs) released from different types of kidney cells under physiologic conditions contribute to homeostasis maintenance, immune-modulation, and cell-to-cell communications. EVs can also negatively affect the progression of renal diseases through their pro-inflammatory, pro-fibrotic, and tumorigenic potential. Inhibiting EVs by blocking their production, release, and uptake has been suggested as a potential therapeutic mechanism based on the significant implication of exosomes in various renal diseases. On the other hand, stem cell-derived EVs can ameliorate tissue injury and mediate tissue repair by ameliorating apoptosis, inflammation, and fibrosis while promoting angiogenesis and tubular cell proliferation. Recent advancement in biomedical engineering technique has made it feasible to modulate the composition of exosomes with diverse biologic functions, making EV one of the most popular drug delivery tools. The objective of this review was to provide updates of recent clinical and experimental findings on the therapeutic potential of EVs in renal diseases and discuss the clinical applicability of EVs in various renal diseases.

Sweroside plays a role in mitigating high glucose-induced damage in human renal tubular epithelial HK-2 cells by regulating the SIRT1/NF-κB signaling pathway

  • Xiaodan Ma;Zhixin Guo;Wenhua Zhao;Li Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.533-540
    • /
    • 2023
  • Sweroside is a natural monoterpene derived from Swertia pseudochinensis Hara. Recently, studies have shown that sweroside exhibits a variety of biological activities, such as anti-inflammatory, antioxidant, and hypoglycemic effects. However, its role and mechanisms in high glucose (HG)-induced renal injury remain unclear. Herein, we established a renal injury model in vitro by inducing human renal tubular epithelial cell (HK-2 cells) injury by HG. Then, the effects of sweroside on HK-2 cell activity, inflammation, reactive oxygen species (ROS) production, and epithelial mesenchymal transition (EMT) were observed. As a result, sweroside treatment ameliorated the viability, inhibited the secretion of inflammatory cytokines (TNF-α, IL-1β, and VCAM-1), reduced the generation of ROS, and inhibited EMT in HK-2 cells. Moreover, the protein expression of SIRT1 was increased and the acetylation of p65 NF-kB was decreased in HK-2 cells with sweroside treatment. More importantly, EX527, an inhibitor of SIRT1, that inactivated SIRT1, abolished the improvement effects of sweroside on HK-2 cells. Our findings suggested that sweroside may mitigate HG-caused injury in HK-2 cells by promoting SIRT1-mediated deacetylation of p65 NF-kB.

Hepatic and renal toxicity study of rainbow trout, Oncorhynchus mykiss, caused by intraperitoneal administration of thioacetamide (TAA) (티오아세트아미드(thioacetamide) 복강투여로 인한 무지개송어, Oncorhynchus mykiss의 간장 및 신장 독성 반응 연구)

  • Min Do Huh;Da Hye Jeong
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.415-422
    • /
    • 2023
  • In veterinary medicine for mammals, studies are being conducted to confirm the effects of antioxidants using pathological toxicity model studies, and are also used to confirm the effect of mitigating liver or kidney toxicity of specific substances. It was considered necessary to study such a toxicity model for domestic farmed fish, so thioacetamide (TAA), a toxic substance that causes tissue damage by mitochondrial dysfunction, was injected into rainbow trout (Oncorhynchus mykiss), a major farmed freshwater fish species in Korea. The experiment was conducted with 40 rainbow trout (Oncorhynchus mykiss) weighting 53 ± 0.6 g divided into two groups. Thioacetamide(TAA) 300mg/kg of body weight was intraperitoneally injected into rainbow trout and samples were taken 1, 3, 5, 7 days after peritoneal injection. As a result, in serum biochemical analysis, AST levels related to liver function decreased 3 and 5 days after intraperitoneal injection and increased after 7 days, and ALT levels also increased after 7 days. In addition, creatinine related to renal malfunction increased 3 and 5 days after TAA injection. In histopathological analysis, pericholangitis and local lymphocyte infiltration were observed in the liver from 1 day after intraperitoneal injection of TAA, and hepatic parenchymal cell necrosis was also observed from 3 days after intraperitoneal injection. Hyaline droplet in renal tubular epithelial cell was observed from 1 day after TAA injection, and acute tubular damage such as tubular epithelial cell necrosis appeared from 3 days after TAA injection. Accordingly, it is thought that it will be able to contribute to studies that require a toxicity model.