Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.1.141

Therapeutic application of extracellular vesicles for various kidney diseases: a brief review  

Lee, Sul A (Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine)
Yoo, Tae Hyun (Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University)
Publication Information
BMB Reports / v.55, no.1, 2022 , pp. 3-10 More about this Journal
Abstract
Extracellular vesicles (EVs) released from different types of kidney cells under physiologic conditions contribute to homeostasis maintenance, immune-modulation, and cell-to-cell communications. EVs can also negatively affect the progression of renal diseases through their pro-inflammatory, pro-fibrotic, and tumorigenic potential. Inhibiting EVs by blocking their production, release, and uptake has been suggested as a potential therapeutic mechanism based on the significant implication of exosomes in various renal diseases. On the other hand, stem cell-derived EVs can ameliorate tissue injury and mediate tissue repair by ameliorating apoptosis, inflammation, and fibrosis while promoting angiogenesis and tubular cell proliferation. Recent advancement in biomedical engineering technique has made it feasible to modulate the composition of exosomes with diverse biologic functions, making EV one of the most popular drug delivery tools. The objective of this review was to provide updates of recent clinical and experimental findings on the therapeutic potential of EVs in renal diseases and discuss the clinical applicability of EVs in various renal diseases.
Keywords
Drug delivery; Exosome; Extracellular vesicles; Kidney; Microvesicles; Renal disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pan T, Jia P, Chen N et al (2019) Delayed remote ischemic preconditioning confers renoprotection against septic acute kidney injury via exosomal miR-21. Theranostics 9, 405-423   DOI
2 Dominguez JM 2nd, Dominguez JH, Xie D and Kelly KJ (2018) Human extracellular microvesicles from renal tubules reverse kidney ischemia-reperfusion injury in rats. PLoS One 13, e0202550   DOI
3 Ebrahim N, Ahmed IA, Hussien NI et al (2018) Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells 7, 226   DOI
4 Cambier L, Giani JF, Liu W et al (2018) Angiotensin II-induced end-organ damage in mice is attenuated by human exosomes and by an exosomal Y RNA fragment. Hypertension 72, 370-380   DOI
5 Cantaluppi V, Medica D, Mannari C et al (2015) Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 30, 410-422   DOI
6 Eirin A, Zhu XY, Puranik AS et al (2017) Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. Kidney Int 92, 114-124   DOI
7 Jing H, Tang S, Lin S, Liao M, Chen H and Zhou J (2019) The role of extracellular vesicles in renal fibrosis. Cell Death Dis 10, 367   DOI
8 Karpman D, Stahl AL and Arvidsson I (2017) Extracellular vesicles in renal disease. Nat Rev Nephrol 13, 545-562   DOI
9 Lipschutz JH (2019) The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development. Kidney Res Clin Pract 38, 260-266   DOI
10 Lee SA, Choi C and Yoo TH (2021) Extracellular vesicles in kidneys and their clinical potential in renal diseases. Kidney Res Clin Pract 40, 194-207   DOI
11 Behrens F, Holle J, Kuebler WM and Simmons S (2020) Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med Exp 8, 22   DOI
12 Grange C, Papadimitriou E, Dimuccio V et al (2020) Urinary extracellular vesicles carrying Klotho improve the recovery of renal function in an acute tubular injury model. Mol Ther 28, 490-502   DOI
13 Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G and Cantaluppi V (2020) Extracellular vesicles as mediators of cellular crosstalk between immune system and kidney graft. Front Immunol 11, 74   DOI
14 Zhu G, Pei L, Lin F et al (2019) Exosomes from humanbone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J Cell Physiol 234, 23736-23749   DOI
15 Zhang G, Zou X, Miao S et al (2014) The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats. PLoS One 9, e92129   DOI
16 Dasgupta SK, Le A, Chavakis T, Rumbaut RE and Thiagarajan P (2012) Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125, 1664-1672   DOI
17 Nassar W, El-Ansary M, Sabry D et al (2016) Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 20, 21   DOI
18 Bochon B, Kozubska M, Surygala G et al (2019) Mesenchymal stem cells-potential applications in kidney diseases. Int J Mol Sci 20, 2462   DOI
19 Li X, Liao J, Su X et al (2020) Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics 10, 9561-9578   DOI
20 Brigstock DR (2021) Extracellular vesicles in organ fibrosis: mechanisms, therapies, and diagnostics. Cells 10, 1596   DOI
21 Lindoso RS, Lopes JA, Binato R et al (2020) Adipose mesenchymal cells-derived EVs alleviate DOCA-salt-induced hypertension by promoting cardio-renal protection. Mol Ther Methods Clin Dev 16, 63-77   DOI
22 Kim S, Lee SA, Yoon H et al (2021) Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int 100, 570-584   DOI
23 Xu M, Yang Q, Sun X and Wang Y (2020) Recent advancements in the loading and modification of therapeutic exosomes. Front Bioeng Biotechnol 8, 586130   DOI
24 Liu X, Miao J, Wang C et al (2020) Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int 97, 1181-1195   DOI
25 Borges FT, Reis LA and Schor N (2013) Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res 46, 824-830   DOI
26 Song T, Eirin A, Zhu X et al (2020) Mesenchymal stem cell-derived extracellular vesicles induce regulatory t cells to ameliorate chronic kidney injury. Hypertension 75, 1223-1232   DOI
27 Kato M (2018) Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res Clin Pract 37, 197-209   DOI
28 Tang TT, Lv LL, Wang B et al (2019) Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 9, 4740-4755   DOI
29 Choi H, Kim Y, Mirzaaghasi A et al (2020) Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality. Sci Adv 6, eaaz6980   DOI
30 Du T, Ju G, Zhou J et al (2021) Microvesicles derived from human umbilical cord mesenchyme promote M2 macrophage polarization and ameliorate renal fibrosis following partial nephrectomy via hepatocyte growth factor. Hum Cell 34, 1103-1113   DOI
31 Xiang E, Han B, Zhang Q et al (2020) Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther 11, 336   DOI
32 Grange C, Tritta S, Tapparo M et al (2019) Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 9, 4468   DOI
33 Jin J, Qian F, Zheng D, He W, Gong J and He Q (2021) Mesenchymal stem cells attenuate renal fibrosis via exosomes-mediated delivery of microRNA Let-7i-5p antagomir. Int J Nanomedicine 16, 3565-3578   DOI
34 Nomura S, Takahashi N, Inami N et al (2004) Probucol and ticlopidine: effect on platelet and monocyte activation markers in hyperlipidemic patients with and without type 2 diabetes. Atherosclerosis 174, 329-335   DOI
35 Yu X, Huang C, Song B et al (2013) CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol 285, 62-68   DOI
36 Pang XL, Wang ZG, Liu L et al (2019) Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation. Aging (Albany NY) 11, 8911-8924   DOI
37 Wu X, Yan T, Wang Z et al (2018) Micro-vesicles derived from human Wharton's Jelly mesenchymal stromal cells mitigate renal ischemia-reperfusion injury in rats after cardiac death renal transplantation. J Cell Biochem 119, 1879-1888   DOI
38 Mossberg M, Stahl AL, Kahn R et al (2017) C1-inhibitor decreases the release of vasculitis-like chemotactic endothelial microvesicles. J Am Soc Nephrol 28, 2472-2481   DOI
39 Jiang XC and Gao JQ (2017) Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm 521, 167-175   DOI
40 Christov M, Neyra JA, Gupta S and Leaf DE (2019) Fibroblast growth factor 23 and Klotho in AKI. Semin Nephrol 39, 57-75   DOI
41 Nagaishi K, Mizue Y, Chikenji T et al (2016) Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep 6, 34842   DOI
42 Nomura S, Inami N, Shouzu A et al (2009) The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients. Platelets 20, 16-22   DOI
43 Zhang A, Wang H, Wang B, Yuan Y, Klein JD and Wang XH (2019) Exogenous miR-26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease. FASEB J 33, 13590-13601   DOI
44 Ju GQ, Cheng J, Zhong L et al (2015) Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS One 10, e0121534   DOI
45 Wang B, Yao K, Huuskes BM et al (2016) Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther 24, 1290-1301   DOI
46 Wang H, Wang B, Zhang A et al (2019) Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice. Mol Ther 27, 571-583   DOI
47 Gu D, Zou X, Ju G, Zhang G, Bao E and Zhu Y (2016) Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int 2016, 2093940
48 Yim N, Ryu SW, Choi K et al (2016) Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun 7, 12277   DOI
49 Du T, Zhou J, Chen WX et al (2020) Microvesicles derived from human umbilical cord mesenchymal stem cells ameliorate renal ischemia-reperfusion injury via delivery of miR-21. Cell Cycle 19, 1285-1297   DOI
50 Chen L, Wang Y, Li S et al (2020) Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics 10, 9425-9442   DOI
51 Chen W, Yan Y, Song C, Ding Y and Du T (2017) Microvesicles derived from human Wharton's Jelly mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal fibrosis by releasing from G2/M cell cycle arrest. Biochem J 474, 4207-4218   DOI
52 Collino F, Lopes JA, Correa S et al (2019) Adipose-derived mesenchymal stromal cells under hypoxia: changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem 52, 1463-1483
53 Linxweiler J and Junker K (2020) Extracellular vesicles in urological malignancies: an update. Nat Rev Urol 17, 11-27   DOI