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　I. INTRODUCTION

Ceramide, a metabolite of sphingolipids, is generated by
degradation of sphingomyelin through the action of
sphingomyelinases and condensation of sphinganine or
sphingosine and fatty acyl-CoA through the enzyme,
ceramide synthase (Pettus et al, 2002). Ceramide has been
implicated as having an important role in the cell
signaling pathway involved in cell growth, proliferation,
and apoptosis, as well as other cell responses (Kolesnick
and Kronke, 1998; Luberto and Hannun, 1999). Many
inducers of apoptosis, such as TNF , Fas ligand, serumα

deprivation, γ-radiation, chemotherapeutic agents, and
ischemia/reperfusion, regulate one or more enzymes of
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ceramide metabolism leading to its accumulation (Pena et
al, 1997 Dbaibo and Hannun, 1998; Pettus et al, 2002).

The extracellular signal-regulated kinase (ERK) is a
mitogen-activated protein kinase subfamily involved in the
regulation of various cellular responses, such as cell-
proliferation, differentiation, and apoptosis (Cross et al,
2000; Pearson et al, 2001). Although it has been generally
accepted that ERK activation delivers survival signals
(Xia et al, 1995; Cobb, 1999), several studies have shown
involvement of ERK activation in cell death induced by
various stimuli (Bhat and Zhang, 1999; Choi et al, 2004;
Kim et al, 2005; Lee et al, 2005; Kim et al, 2006).
Ceramide has been reported to activate ERK in astrocytes
(Blazquez et al., 2000; Kim et al, 2005; Oh et al, 2006).
However, it is unclear whether ERK activation is involved
in ceramide-induced cell death in renal epithelial cells.

This study was undertaken to clarify the role of ERK
activation in ceramide-induced cell death in renal
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epithelial cells. Our results show that ceramide induces
cell death through a caspase-dependent mechanism involving
ERK activation and cytochrome C release.

II. MATERIALS AND METHODS

1. Chemicals

Ceramide, propidium iodide, and Hoechst 33258 were
purchased from Sigma-Aldrich Chemical (St. Louis, MO,
USA). Tween 20, PD98059, and DEVD-CHO were
purchased from Calbiochem (California, USA). Antibodies
of phospho-ERK and -actin were obtained from Cellβ

Signaling Technology Inc. (Beverly, MA, USA). Anti-
cytochrome C monoclonal antibody and horseradish
peroxidase conjugated secondary antibody were purchased
from PharMingen (San Diego, CA, USA). All other
chemicals were of the highest commercial grade available.

2. OK cell culture

OK cells were obtained from the American Type
Culture Collection (Rockville, MD, USA) and maintained
by serial passages in 10 cm2 culture dishes (Costar,
Cambridge, MA, USA). The cells were grown in
Dulbecco’s Modified Eagle’s Medium/Ham’s F12
(DMEM/F12, Sigma Chemical Co.) containing 5% fetal
bovine serum at 37 in a 95% air: 5% CO℃ 2 incubator.
When the cultures reached confluence, a subculture was
prepared using a 0.02% EDTA: 0.05% trypsin solution.
The cells were grown on tissue culture plates in
DMEM/F12 medium containing 10% fetal bovine serum.
All experiments started 3~4 days after plating when a
confluent monolayer culture was achieved. Cells were
exposed to ceramide in serum-free media.

3. Measurement of cell viability and cell death

Cell viability was evaluated using a MTT assay
(Denizot and Lang, 1986). After washing the cells, culture
medium containing 0.5 mg/mL of MTT was added to

each well. The cells were incubated for 2 hours at 37 .℃
The supernatant was removed and the formed formazan
crystals in viable cells were solubilized with 0.11 mL of
dimethyl sulfoxide. A 0.1 mL aliquot of each sample was
then transferred to a 96-well plate and the absorbance of
each well was measured at 550 nm with an ELISA
Reader (FLUOstar OPTIMA, BMG LABTECH, Offen-
burg, Germany). Data was expressed as a percentage of
control measured in the absence of MF. Unless otherwise
stated, the cells were exposed to 50 M MF for 48 hours.μ

Test reagents were added to the medium 30 minutes
before MF exposure.

Cell death was estimated by counting the cell numbers
using a trypan blue exclusion assay. The cells were
harvested using 0.025% trypsin and incubated with 4%
trypan blue solution. Viable and nonviable cells were
counted using a hemocytometer under light microscopy.
Cells failing to exclude the dye were considered
nonviable.

4. Measurement of apoptosis

a) Cytochemical staining
Cells were grown in 6-well plates after treatment with

stimuli. The cells were washed twice with PBS and fixed
with 4% paraformaldehyde in PBS (pH 7.4) for 1 hour at
4 then stained with 10 M Hoechst 33258 for 15℃ μ

minutes at 37 . Cells were then washed twice with PBS℃

and examined by confocal microscopy (LSM510, ZEISS,
Germany).

b) Annexin V staining
Phosphotidylserine exposure on the outer layer of the cell

membrane was measured using annexin V-fluorescein
isothiocyanate (FITC) binding. Cells were harvested and
washed with cold PBS, incubated for 15 minutes with annexin
V-FITC and propidium iodide, then analyzed by flow
cytometry (Becton Dickinson, Franklin Lakes, NJ, USA).

5. Western blot analysis

Cells were harvested at various times after ceramide
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treatment and disrupted in lysis buffer (1% Triton X-100,
1 mM EGTA, 1 mM EDTA, 10 mM Tris-HCl [pH 7.4]).
Cell debris was removed by centrifugation at 10,000 g for
10 minutes at 4 . The resulting supernatants were℃

resolved on 10% SDS-PAGE under denatured reducing
conditions and transferred to nitrocellulose membranes.
The membranes were treated with 5% non-fat dry milk at
room temperature for 30 minutes and incubated with
rabbit polyclonal antibodies against specific phos-
phorylated forms of ERK and -actin. The membranesβ

were washed and incubated with the respective secondary
antibodies conjugated with 5% non-fat dry milk. Signals
were visualized using enhanced chemiluminescence
(Amersham, Buckinghamshire, UK).

6. Measurement of cytochrome C release

Cells were harvested and washed twice with PBS. The
cells were incubated with extraction buffer (10 mM
Hepes, 250 mM sucrose, 10 mM KCl, 1.5 mM MgCl2, 1
mM EDTA, 1 mM EGTA, 0.05% digitonin, and 1 mM
phenylmethylsulfonyl fluoride) at 4 for 10 minutes, then℃

centrifuged at 100,000 g for 10 minutes at 4 The℃

supernatant represented the cytosolic protein. The pellet
was disrupted or in the lysis buffer (1% Triton X-100, 1
mM EGTA, 1 mM EDTA, 10 mM Tris-HCl [pH 7.4],
and protease inhibitors). The cytosolic protein was loaded
onto 15% SDS-PAGE. The gel was transferred to
nitrocellulose paper, which was treated with 5% nonfat
dry milk in Tris-buffered saline and 0.05% Tween-20
(TBST), and probed with anti-cytochrome C monoclonal
antibody, followed by horseradish peroxidase-conjugated
secondary antibody. Bands were visualized by
chemiluminescence using an ECL kit (Amersham,
Buckinghamshire, UK).

7. Measurement of caspase activity

Caspase-3 activity was measured with a caspase-3
colorimetric assay kit (R&D Systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions. Cell

suspensions were centrifuged at 250 g; the supernatant
was gently removed; and the cell pellet was lysed in cell
lysis buffer at 4°C for 10 minutes. The cell lysate was
then incubated with the caspase-3 colorimetric substrate
DEVD-pNA at 37°C for 1 hour. The cleavage of the
peptide was quantified spectrophotometrically at a wavelength
of 405 nm.

8. Statistical analysis

The data are expressed as means±SEM and the
significance of the difference between 2 groups was
evaluated by t-test. Multiple group comparisons were done
using one-way analysis of variance followed by the Tukey
post hoc test. A probability level of 0.05 was used to
establish significance.

III. RESULTS

Apoptosis by ceramide in OK cells

Ceramide induced loss of cell viability depending on
time and concentration (Fig. 1). Ceramide also induced
cell death in a time-dependent manner with patterns
similar to cell viability loss (Fig. 2). To determine if
ceramide caused apoptotic cell death, cells were stained
with the fluorescence dye Hoechst 33258. The cells
treated with ceramide exhibited DNA fragmentation, a
typical morphological feature of apoptosis (Fig. 3A).
Annexin-V binding assay also demonstrated that 22.92%
of cells exposed to ceramide for 24 hours were apoptotic
(Fig. 3B right lower and upper quadrants). To ascertain
whether ceramide-induced apoptosis occurred in a
time-dependent fashion, cells were exposed to ceramide for
various times. Significant apoptosis was present after 12
hours of treatment and increased up to 48 hours (Fig. 3C).

Role of ERK activation in ceramide-induced apoptosis

To determine if ERK activation is involved in
ceramide-induced apoptosis, cells were exposed to
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mediate survival signals (Xia et al., 1995); however, in
the present study, we observed that ERK activation
mediated cell death rather than cell survival in
ceramide-exposed cells. Previous studies have reported
that ERK activation is involved in cell death induced by
cisplatin in renal epithelial cells (Nowak, 2002; Kim et al,
2005). In our study the ERK inhibitor PD98059 prevented
ceramide induced activation of ERK (Fig. 4A and B) as
well as ceramide induced cell death (Fig. 5).

Two distinct apoptotic pathways have been proposed in
mammalian cells: receptor-mediated and mitochondria-
mediated. The receptor-mediated pathway is triggered by
an activationof cell death receptors (Fas and tumor
necrosis factor) followed by an activation of caspase-8,
which in turn cleaves and activates downstream caspase-3
(Wang et al, 2000; Woessmann et al, 2002; Xia et al,
1995). The mitochondrial pathway is initiated by
cytochrome C release which promotes the activation of
caspase-9 through Apaf-1. The activated caspase-9 then
activates downstream caspase-3 (Chandra et al, 2002).
Previous studies demonstrated that ceramide-induced cell
death was associated with cytochrome C release and
caspase activation (Cuvillier et al, 2003; Seefelder et al,
2003); however, whether these events were mediated by
ERK activation was not explored in renal epithelial cells.
In the present study, ceramide induced cytochrome C
release, caspase activation, and subsequent effects were
eliminated by ERK inhibitor PD98059 (Figs. 4C and 6B).
These results suggest that ERK activation is involved in the
mitochondria-dependent apoptotic pathway in ceramide-
exposed OK cells.

In conclusion, we demonstrated that ceramide-induced
cell death in OK cells is mediated by activation of ERK
occurring upstream of cytochrome C release and caspase
activation.
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