• Title/Summary/Keyword: Removal Torque Value

Search Result 58, Processing Time 0.017 seconds

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

THE INFLUENCE OF ABUTMENT SCREW LENGTH AND REPEATED TIGHTENING ON SCREW LOOSENING IN DENIAL IMPLANT (치과용 임플랜트에서 지대주 나사의 길이 및 반복 조임 횟수가 지대주 나사의 풀림에 미치는 영향)

  • Choi Jin-Ho;Yang Jae-Ho;Cho Won-Pyo;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.432-442
    • /
    • 2006
  • Statement of problem: One of common problems associated with dental implant is the loosening of abutment screws that retain the implants. Purpose : This study was performed to investigate the influence of abutment screw length and repeated tightening on screw loosening in dental implant. Material and method: Forty nine Hexplants (13mm length, 4.3mm diameter, Ti grade IV, Warantec. Co. Ltd. Seongnam, Korea) and cementation type abutments(straight abutment) and abutment screws (0.4mm/pitch) were divided into 7 groups, depending on abutment screw length. Each implant and abutment was tightened to 30Ncm by torque controller(MGT50, MARK-10 Inc., USA) and the removal torque values were measured during 10 consecutive closure/opening trials. Results and Conclusion: The results of comparing the removal torque value are as follows : 1. There is no significant difference in the removal torque value between groups in 10 consecutive closure/opening trials (p = 0.97). 2. If the fractured abutment screw is engaged in longer than 2.425 thread length, there is no significant difference in the preload between the fractured abutment screw and the new abutment screw when both are equally tightened to 30 Ncm. 3. The removal torque value in the 1st trial(24.510 Ncm) was lower than that in the 2nd, 3rd, 4th, 5th, 6th, 7th trials and the removal torque value in the 2nd trials(25.551 Ncm) was maximum and was decreased in 1311owing trials. The removal torque value in the 1st trial was significantly lower than that in the 2nd, 3rd, 4th trials and was significantly higher than that in the 8th, 9th, l0th trials(p<0.05). 4. In the 2nd, 3rd, 4th, 5th, 6th, 7th trials, the abutment screw was mainly influenced by settling effect and the higher preload was obtained In the 8th, 9th, l0th trials, the abutment screw was mainly influenced by adhesive wear and the progressively lower preload was obtained.

The influence of intentional mobilization of implant fixtures before osseointegration (골유착전 임플란트 고정체의 의원성 동요가 골결합에 미치는 영향)

  • Cho, Jin-Hyun;Jo, Kwang-Heon;Cho, Sung-Am;Lee, Kyu-Bok;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the influence of mobilization on bone-implant interface prior to osseointegration of fixtures. Materials and methods: The experimental implants (3.75 mm in diameter, 4.0 mm in length) were made of commercially pure (Grade IV) titanium, and were treated with RBM ($MegaGen^{(R)}$: Ca-P). The 80 implants (two in each tibia) were inserted into the monocortical tibias of 20 rabbits which each weighed more than 3.5 kg (Female, New Zealand White). According to the removal torque interval, the groups were divided into 10 groups, Group I (6 wks), Group II (4 days+6 wks), Group III (4 days+1 wk+6 wks), Group IV (1 wk+6 wks), Group V (1 wk+1 wk+6 wks), Group VI (2 wks+6 wks), Group VII (2 wks+ 1 wk+6 wk), Group VIII (3 wks+6 wks), Group IX (3 wks+1 wk+6 wks) and Group X (10 wks). The control groups were Group I and X, the removal torque was measured at 6 wks and 10 wks with a digital torque gauge (Mark-10, USA). In the experimental groups, the removal torque was given once or twice before the final removal torque and the value was measured each time. After which, the implants were put back where they had been except the control groups. All the experimental groups were given a final healing time (6 wks) before the final removal torque test, in which values were compared with the control groups and the 1st and/or 2nd removal torque values in each experimental group. Results: In the final removal torque tests, the removal torque value of Group X (10 wks) was higher than that of Group I (6 wks) in the control groups but not statistically different. There were no significant differences between the experimental groups and control groups (P>.05). In the first removal torque comparison, the experimental groups (4 days or 1 wk) values were significantly lower than the other experimental groups (2 wks or 3 wks). In the comparison of each experimental group according to healing time, the final removal torque value was significantly higher than the 1st torque test value. Conclusion: Once or twice mobilization of fixture prior to osseointegration did not deter the final bone to implant osseointegration, if sufficient healing time was given.

THE ASSESSMENT OF ABUTMENT SCREW STABILITY BETWEEN THE EXTERNAL AND INTERNAL HEXAGONAL JOINT UNDER CYCLIC LOADING

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2008
  • STATEMENT OF PROBLEM: Currently, many implant systems are developed and divided into two types according to their joint connection: external or internal connection. Regardless of the connection type, screw loosening is the biggest problem in implant-supported restoration. PURPOSE: The purpose of this study is to assess the difference in stability of abutment screws between the external and internal hexagonal connection types under cyclic loading. MATERIAL AND METHODS: Each of the 15 samples of external implants and internal abutments were tightened to 30 N/cm with a digital torque gauge, and cemented with a hemispherical metal cap. Each unit was then mounted in a $30^{\circ}$ inclined jig. Then each group was divided into 2 sub-groups based on different periods of cyclic loading with the loading machine (30 N/ cm - 300 N/cm,14 Hz: first group $1{\times}10^6$, $5{\times}10^6$ cyclic loading; second group $3{\times}10^6$, $3{\times}10^6$ for a total cyclic loading of $6{\times}10^6$) The removal torque value of the screw before and after cyclic loading was checked. SPSS statistical software for Windows was used for statistical analysis. Group means were calculated and compared by ANOVA, independent t-test, and paired t-test with ${\alpha}$=0.05. RESULTS: In the external hexagonal connection, the difference between the removal torque value of the abutment screw before loading, the value after $1{\tims}10^6$ cyclic loading, and the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was not significant. The difference between the removal torque value after $3{\times}10^6$ cyclic loading and after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. In the internal hexagonal connection, the difference between the removal torque value before loading and the value after $1{\times}10^6$ cyclic loading was not significant, but the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was reduced and the difference was significant (P < .05). In addition, in the internal hexagonal connection, the difference between the removal torque value after $3{\times}10^6$ cyclic loading and the value after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. CONCLUSION: The external hexagonal connection was more stable than the internal hexagonal connection after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading (t = 10.834, P < .001). There was no significant difference between the two systems after $3{\times}10^6$, and additional $3{\times}10^6$ cycles.

DEVELOPMENT OF PREDICTABLE STABILITY TEST FOR ASSESSMENT OF OPTIMUM LOADING TIME IN DENTAL IMPLANT

  • Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Kwon, Ji-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.628-633
    • /
    • 2008
  • STATEMENT OF PROBLEM: The application of a simple, clinically applicable noninvasive test to assess implant stability are considered highly desirable. So far there is still a controversy about correlation of various tests and implant stability. PURPOSE: In order to assess implant stability, the development of a new method is critical. It's possible to assess implant stability by calculating energy and angular momentum during implant installation. The purpose of this study is to evaluate the correlation of energy and implant stability. MATERIAL AND METHODS: Twenty three implants were installed in two different types of pig bone. Type I bone was retrieved from the distal aspect of the rib, with more cortical bone. Type II bone came from a more proximal region with less cortical components and a higher content of bone marrow and spongeous trabeculae. Insertion torque, removal torque, ISQ values and angular momentum and energy were measured. Pearson Correlation test was done to analyze the relation between RFA, maximum insertion torque, mean insertion torque, bone type, energy and removal torque. RESULTS: Type I bone showed higher removal torque than type II bone. Energy value was significantly correlated with maximum insertion torque and mean insertion torque. RFA values were related with insertion torques but the significance was lower than Energy value. CONCLUSION: Within the limitation of this study energy values were considered clinically predictable method to measure the implant stability.

HISTOMORPHOMETRIC AND REMOVAL TORQUE VALUES COMPARISION OF ROUGH SURFACE TITANIUM IMPLANTS (임프란트 표면처리 방법에 따른 골유착의 조직계측학적 분석 및 제거회전력 비교 연구)

  • Lee, Sang-Chul;Song, Woo-Sik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.5
    • /
    • pp.396-405
    • /
    • 2001
  • Osseointegrated implants are used for the fixation of dental prosthesis with good long-term clinical results. In an attempt to improve the quantity and quality of the bone-implant interface, numerous implant modification have been used. Implants surface modifications have been used such as titanium-plasma sprayed, hydroxyapatite-coating, sandblasted, sandblasted and acid-etched, acid-etched. Rough surface implants have greater implant surface area and enhance the bone-implant interface and improve stabilization. The purpose of present study was to evaluate light microscopic and scanning microscopic examinations and removal torque value of newly developed calcium phosphate blast and acid-etched implant in the femur of rabbits. Titanium plasma sprayed(TPS) implant served as controls. After 12 weeks of healing of the femurs of 12 rabitts, the implant-containing segments of femur were removed on bloc and bone block including sections. Histologic examination and histomorphometric and removal torque values comparision were made for two implants. Obtained results are follows: 1. Newly developed calcium phosphate blasted and acid-etched implants were in close contact with bone under light microscopic examinations. 2. New implants showed mean bone-to implant contact 59.8%, whereas TPS implants showed mean bone-to implant contact 54.5% (statistically no difference p<0.05). 3. New implants showed mean bone density 56.7%, whereas TPS implants showed mean bone density 49.2% (statistically difference p<0.05). 4. New implants demonstrated mean removal torque values 40.5Ncm, whereas the mean removal torque values of TPS implants ranged 39.3Ncm. No statistical differences(p<0.05) were observed between two groups of implants nor was there any difference between the two implants at the clinical level.

  • PDF

REMOVAL TORQUE OF BICORTICALLY STABILIZED RBM(RESORBABLE BLAST MEDIA) PIN IMPLANTS IN RABBIT TIBIA

  • Kim, Kwon-Sik;Suh, Kyu-Won;Lee, Richard Sung-Bok;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.722-733
    • /
    • 2006
  • Statement of problem. The use of small diameter implants having less than 3 mm in diameter were restricted because of lack of bonding strength to bone. Purpose. The purpose of this study was to observe how much resorbable blast media pin implants increase the binding force to the bone compared to machined transitional pin implants by measuring removal torque, and whether they can be used as final implants for replacement of small diameter teeth. Material and method. Fifteen rabbits were used in this study. Two kinds of implants (resorbable blast media pin implants and machined transitional pin implants) were inserted in each tibia bicortically. After healing time of 2, 4 and 8 weeks, the removal torque values were recorded and the rabbits were sacrificed for histological analysis. Linear finite element method analyses were conducted to compare bicortical fixation with monocortical fixation. Result and conclusion. Within the limitation of this in vivo study, the following conclusions were drawn: 1) The removal torque value of RBM pin implants showed statistically significant increase compared to machined pin implants at 2, 4, and 8 weeks respectively (p<0.05). 2) The removal torque value of RBM pin implants at 2, 4, and 8 weeks was increased statistically significantly with time (p<0.05). 3) Bicortical fixation showed better stress distribution compared with monocortical fixation in a linear finite element method analysis. 4) RBM pin implants are not recommended as transitional implants because they showed a lot of bone fracture in histologic specimens.

Influence of the implant-abutment connection design and diameter on the screw joint stability

  • Shin, Hyon-Mo;Huh, Jung-Bo;Yun, Mi-Jeong;Jeon, Young-Chan;Chang, Brian Myung;Jeong, Chang-Mo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • PURPOSE. This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (${\alpha}$=0.05). RESULTS. The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION. The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

INFLUENCE OF IMPLANT DIAMETER ON THE OSSEOINTEGRATION OF IMPLANTS : AN EXPERIMENTAL STUDY IN RABBITS (임플란트 직경이 골유착에 미치는 영향에 관한 연구)

  • Lee Jun-Ho;Shin Sang-Wan;Kwon Sang-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.169-181
    • /
    • 2003
  • Statement of problem : The survival rate of wide diameter implants was lower than of 3.75-mm implants in some clinical researches. Purpose : The purpose of this study was to investigate the influence of implant diameter on the osseointegration of implants in the rabbit femoral condyle and tibial metaphyses by means of removal torque measurements and histomorphometric analysis. Material and Method : Ten adult New Zealand White rabbits were used in this study Two 3.75-mm diameter implants were inserted through one cortical layer in the tibial metaphyses and one 3.75-mm diameter implant was inserted in the femoral condyle. 5.0-mm diameter implants were inserted in the other leg in the same manner. A total of 60 implants (3.75-mm diameter implants:30 : 5.0-mm diameter implants:30) were installed. After a healing time of 4 and 12 weeks, the peak removal torque values required to shear off the implants were recorded. From the removal torque values (Ncm) obtained, the mean shear stress ($N/mm^2$) was calculated. And the percentage of direct bone-to-implant contact and the percentage of bone area inside the thread were measured by Kappa Image Base-metreo. The Student's t-test was undertaken for statistical analysis (p<0.05). Results : The removal torque value of 5.0-mm diameter implants was higher than of 3.75-mm diameter implants (p<0.05). The difference of shear stress value between 3.75-mm and 5.0-mm diameter implants was not statistically significant (p>0.05). The percentage direct bone-to-implant contact had no statistical difference between two groups (p>0.05). The percentage of bone area inside the thread had no statistical difference between two groups (p>0.05). Conclusion It is concluded that the quality f osseointegration is not influenced by increasing implant diameter.

Effect of microthreads on removal torque and bone-to-implant contact: an experimental study in miniature pigs

  • Kwon, Yee-Seo;Namgoong, Hee;Kim, Jung-Hoon;Cho, In Hee;Kim, Myung Duk;Eom, Tae Gwan;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • Purpose: The objective of this study was to evaluate the effect of microthreads on removal torque and bone-to-implant contact (BIC). Methods: Twelve miniature pigs for each experiment, a total of 24 animals, were used. In the removal torque analysis, each animal received 2 types of implants in each tibia, which were treated with sandblasting and acid etching but with or without microthreads at the marginal portion. The animals were sacrificed after 4, 8, or 12 weeks of healing. Each subgroup consisted of 4 animals, and the tibias were extracted and removal torque was measured. In the BIC analysis, each animal received 3 types of implants. Two types of implants were used for the removal torque test and another type of implant served as the control. The BIC experiment was conducted in the mandible of the animals. The $P_1-M_1$ teeth were extracted, and after a 4-month healing period, 3 each of the 2 types of implants were placed, with one type on each side of the mandible, for a total of 6 implants per animal. The animals were sacrificed after a 2-, 4-, or 8-week healing period. Each subgroup consisted of 4 animals. The mandibles were extracted, specimens were processed, and BIC was analyzed. Results: No significant difference in removal torque value or BIC was found between implants with and without microthreads. The removal torque value increased between 4 and 8 weeks of healing for both types of implants, but there was no significant difference between 8 and 12 weeks. The percentage of BIC increased between 2 and 4 weeks for all types of implants, but there was no significant difference between 4 and 8 weeks. Conclusions: The existence of microthreads was not a significant factor in mechanical and histological stability.