• 제목/요약/키워드: Removal Technology

검색결과 3,707건 처리시간 0.042초

Micellar Enhanced Ultrafiltration (MEUF) and Activated Carbon Fiber (ACF) Hybrid Processes for the Removal of Cadmium from an Aqueous Solution

  • Rafique, Rahman Faizur;Lee, Seunghwan
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.775-780
    • /
    • 2014
  • Micellar enhanced ultrafiltration (MEUF) was used to remove cadmium from an aqueous solution using sodium dodecyl sulfate (SDS) as a surfactant. Operational parameters such as initial permeate flux, retentate pressure, initial cadmium concentration, pH solution, molecular weight cut-off (MWCO), and molar ratio of cadmium to SDS were investigated. Removal efficiency of cadmium from an aqueous solution increased with an increase of retentate pressure, pH solution and molar ratio of cadmium to SDS, and decreased with an increase of initial permeate flux. Higher removal efficiency of cadmium from the aqueous solution was achieved using lower MWCO (smaller membrane pore size). Under optimized experimental condition, cadmium removal efficiency reached 74.6 % within an hour. Using MEUF-ACF hybrid process the removal efficiency of both cadmium and SDS was found to be over 90%.

단계 주입 활성슬러지공법에서 질소제거를 위한 반응기 용적비 추정 (Estimation of the Reactor Volume Ratio for Nitrogen Removal in Step-Feed Activated Sludge Process)

  • 이병대
    • 한국응용과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.130-136
    • /
    • 2006
  • Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ${\pm}14.2$.

효과적인 구리 제거제 합성 및 처리 기술 개발에 관하여 (Synthesis of Removal Agent and Developement of Treatment Technology on Copper)

  • 조병락
    • 한국산업융합학회 논문집
    • /
    • 제16권2호
    • /
    • pp.35-39
    • /
    • 2013
  • This paper synthesized the new copper removal agent(PW-2001) and investigated removal efficiency of copper, COD, calcium, SS and sludge amounts. Removal efficiency of copper were 96.1% and 99.1% with the lime and PW-2001, respectively while COD removals reached up to 38% and 69.6% with the use of lime and PW-2001. The concentrations of calcium and SS with PW-2001 were decreased 2.68 and 4.95 times lower than those with lime. Amount of sludge with PW-2001 was 60% smaller than lime. Quantity of PW-2001 needed for coagulation only reached 58.7, compared to lime standard quantity(100), and total cost of copper removal with PW-2001 was saved 25% more than lime.

펄스 코로나 방전 공정에서 탈질, 탈황 효율의 실험적 분석 (Experimental Analysis on the Desulfurizarion and Denitrification Efficiencies in Pulsed Corona Discharge Process)

  • 김성민;김교선
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.181-186
    • /
    • 2003
  • In this study, we analyzed $NO_x$ and $SO_x$ removal efficiencies by a pulsed corona discharge process and investigated the effect of several process variables. The removal efficiencies of NO and $SO_2$ were measured changing the process variables of initial concentrations of NO, $H_2O$, and $NH_3$, $SO_2$, applied voltage, pulse frequency and residence time. As the applied voltage or the frequency of applied voltage or the residence time increases, the NO and $SO_2$ removal efficiencies increase. The NO and $SO_2$ removal efficiencies also increase by the addition of $O_2$ or $H_2O$, or by using the large diameter of the discharge electrode. The experimental results can be used as a basis to design the pulsed corona discharge process to remove $NO_x$, $SO_x$ and VOCs.

  • PDF

2단 간헐폭기 시스템에서 aeration cycle이 질소 및 인 제거에 미치는 영향 (Influence of Aeration Cycle on Nitrogen and Phosphorus Removal in Two-Stage Intermittent Aeration System)

  • 정명선;이준호;서광범;김영관
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.193-197
    • /
    • 2003
  • This bench-scale research investigated the aeration cycle(on/off) as the controlling factors for nitrogen and phosphorus removal in a 2-stage, intermittent aeration process. At this experiment, the aeration cycle time(air-on/air-off) was 30min/30min, 60min/60min, 90min/90min. Organic matter removal was observed more than 90% regardless of the aeration cycle and phosphorus removal was relatively high when the aeration cycle time was 60min/60min On the other hand. For all of the aeration cycle, TN removal was appeared less than 55%. This result was probably due to the limitation of the external substrate for heterotrophic nitrification and aerobic denitrification.

  • PDF

Zero-valent Iron와 Granular Activated Carbon의 조합공정을 이용한 Fenitrothion의 제거에 관한 연구 (A Study on Removal of Fenitrothion by Integrated Zero-valent Iron and Granular Activated Carbon Process)

  • 이동윤;문병현
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.385-390
    • /
    • 2010
  • This study investigated the decomposition of fenitrothion in Smithion, which is applied on the golf course for pesticide, by the integrated Zero-valent iron(ZVI) and Granular activated carbon(GAC) process. First, the removal efficiencies of the fenitrothion by ZVI and GAC, respectively, were investigated. Second, the removal efficiencies of the fenitrothion by the integrated ZVI and GAC were investigated. The removal efficiencies of fenitrothion by ZVI were higher than those of TOC. The removal efficiencies of fenitrothion and TOC by GAC were similar. As the dosages of ZVI and GAC were increased, the removal efficiencies of fenitrothion and TOC increased. However, as the dosages of ZVI for pretreatment were increased, the adsorptions of fenitrothion on GAC were hindered.

Application of Biofilter Using Fibril-form Matrix for Odor Gas Removal

  • Lee, Gwang-Yeon;Jeong, Gwi-Taek;Lee, Kyoung-Min;Snuwoo, Chang-Shin;Lee, Woo-Tae;Cha, Jin-Myoung;Jang, Young-Seon;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.247-251
    • /
    • 2005
  • This research was performed for developing of biological treatment process of odor gas such as MEK, $H_{2}S$, and toluene, which is generated from the food waste recycling process. To establish the operational conditions of odor gas removal by small-scale biofiltration equipment, it was continuously operated by using toluene as a treating odor object. When the odor treating microorganisms were adhered to fibril form biofilter, high removal efficiency over 93% was obtained by biofilm formation. At 400 ppm of inlet odor gas concentration and 10 sec of retention time, the removal efficiency was 76% and 93% in 1st stage reactor and 2nd stage reactor, respectively. However, the removal efficiency remained over 97% at the operational conditions above 15 sec of retention time.

  • PDF

Response Surface Methodological Approach for Optimization of Removal of Free Fatty Acid in Crude Oil

  • Jeong, Gwi-Taek;Lee, Kyoung-Min;Yang, Hee-Seung;Park, Seok-Hwan;Kim, Jae-Hoon;Kim, Do-Man;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.904-909
    • /
    • 2005
  • To optimize the removal of free fatty acid in crude vegetable oil, response surface methodology was applied to determine the effects of five level-four factors and their reciprocal interactions on removal of free fatty acid. A total of 30 individual experiments were performed, which were designed to study reaction temperature, reaction time, catalyst amount and methanol amount. A statistical model predicted that the highest removal yield of free fatty acid was 99.8%, at the following optimized reaction conditions: a reaction temperature of 64.99$^{\circ}C$, a reaction time of 36.20 mins., an catalyst amount of 13.01% (w/v), and a methanol amount of 15% (v/v). Using these optimal factor values under experimental conditions in three independent replicates, the average removal yield was well within the value predicted by the model.

  • PDF

분무수 pH 변화에 따른 에어와셔의 가스제거 성능변화 (Gas removal efficiency of air washer system according to pH of sprayed water)

  • 남승백;하종필;김태형;문인호;조인수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.488-492
    • /
    • 2007
  • In this study, experiment was done to verify the relationship between sprayed water's pH and gas removal efficiency of the Air Washer system. The experiment was done with sprayed water's pH in between pH 4.7 to 7.7, and Ion Chromatography analysis was used to identify the system's gas removal efficiency. As a result, $NH_3$ is removal efficiency decreased under 50% above pH 7, and $SO_X$ and $NO_X$ removal efficiency decreased under pH 6. Through this research, the optimum pH operating condition of the Air Washer System was conformed to be in range between pH6 to pH6.5.

  • PDF

사파이어 화학기계적 연마에서 결정 방향이 재료제거 특성에 미치는 영향 (Effect of Crystal Orientation on Material Removal Characteristics in Sapphire Chemical Mechanical Polishing)

  • 이상진;이상직;김형재;박철진;손근용
    • Tribology and Lubricants
    • /
    • 제33권3호
    • /
    • pp.106-111
    • /
    • 2017
  • Sapphire is an anisotropic material with excellent physical and chemical properties and is used as a substrate material in various fields such as LED (light emitting diode), power semiconductor, superconductor, sensor, and optical devices. Sapphire is processed into the final substrate through multi-wire saw, double-side lapping, heat treatment, diamond mechanical polishing, and chemical mechanical polishing. Among these, chemical mechanical polishing is the key process that determines the final surface quality of the substrate. Recent studies have reported that the material removal characteristics during chemical mechanical polishing changes according to the crystal orientations, however, detailed analysis of this phenomenon has not reported. In this work, we carried out chemical mechanical polishing of C(0001), R($1{\bar{1}}02$), and A($11{\bar{2}}0$) substrates with different sapphire crystal planes, and analyzed the effect of crystal orientation on the material removal characteristics and their correlations. We measured the material removal rate and frictional force to determine the material removal phenomenon, and performed nano-indentation to evaluate the material characteristics before and after the reaction. Our findings show that the material removal rate and frictional force depend on the crystal orientation, and the chemical reaction between the sapphire substrate and the slurry accelerates the material removal rate during chemical mechanical polishing.