• 제목/요약/키워드: Reliability-based analysis

검색결과 4,334건 처리시간 0.035초

수력발전소 설비 신뢰성 분석을 위한 FMEA (FMEA for Facility Reliability Analysis of A Hydro-power Plant)

  • 권창섭;전태보
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.135-144
    • /
    • 2006
  • The significance of hydro-power plant is increasing in its public roles such as flood control and water supply as well as electric power production. Even if high level of reliability in facility operation is required, no specific reliability research has been made. This specifically stems from the lack of technology and research investments. The eventual goal of this study is to secure a methodology for reliability analysis of hydro-power plant so that an appropriate decision for operation and investment can be made. Specific effort was put to develop a reliability model for water supply system within hydro-power plant. For this study, we briefly examined the overview of the hydro-power plant including the electric power generation facility system. We then discussed the facility reliability analysis methodology for hydro-power plant. Based on rigorous examination of the water supply system and components roles, we drew major failure modes for each component and examined their effects.

  • PDF

L.E.O. Satellite Power Subsystem Reliability Analysis

  • Zahran M.;Tawfik S.;Dyakov Gennady
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.104-113
    • /
    • 2006
  • Satellites have provided the impetus for the orderly development of reliability engineering research and analysis because they tend to have complex systems and hence acute problems. They were instrumental in developing mathematical models for reliability, as well as design techniques to permit quantitative specification, prediction and measurement of reliability. Reliability engineering is based on implementing measures which insure an item will perform its mission successfully. The discipline of reliability engineering consists of two fundamental aspects; $(1^{st})$ paying attention to details, and $(2^{nd})$ handling uncertainties. This paper uses some of the basic concepts, formulas and examples of reliability theory in application. This paper emphasizes the practical reliability analysis of a Low Earth Orbit (LEO) Micro-satellite power subsystem. Approaches for specifying and allocating the reliability of each element of the power system so as to meet the overall power system reliability requirements, as well as to give detailed modeling and predicting of equipment/system reliability are introduced. The results are handled and analyzed to form the final reliability results for the satellite power system. The results show that the Electric Power Subsystem (EPS) reliability meets the requirements with quad microcontrollers (MC), two boards working as main and cold redundant while each board contains two MCs in a hot redundant.

검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가 (Reliability Updates of Driven Piles Using Proof Pile Load Test Results)

  • 박재현;김동욱;곽기석;정문경;김준영;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

IEC 61508에 기반한 원자력 발전소용 안전 등급 제어기의 SIL 분석에 대한 사례연구 (A Case Study of SIL Analysis for Single Station Controller in Nuclear Power Plant Based on IEC 61508)

  • 김건명
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권3호
    • /
    • pp.231-237
    • /
    • 2016
  • Purpose: It is not easy to suggest a quantitative data related to safety analysis. The objective of this paper is to propose a method of Safety Integrity Level (SIL) analysis and to suggest a SIL analysis result for single station controller in nuclear power plant based on IEC 61508. Methods: The Failure Modes and Effects Diagnostic Analysis (FMEDA) and average probability of failure on demand (PFD) are used for SIL assessment. Results: A SIL of single station controller is evaluated 4 by a reliability analysis results and PFD. Conclusion: A SIL analysis method and result for single station controller based on IEC 61508 are proposed in this paper. It can applicable for a manufacturer data in safety-related system.

Analysis of structural dynamic reliability based on the probability density evolution method

  • Fang, Yongfeng;Chen, Jianjun;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.201-209
    • /
    • 2013
  • A new dynamic reliability analysis of structure under repeated random loads is proposed in this paper. The proposed method is developed based on the idea that the probability density of several times random loads can be derived from the probability density of single-time random load. The reliability prediction models of structure based on time responses under several times random loads with and without strength degradation are obtained by using the stress-strength interference theory and probability density evolution method. The resulting differential equations in the prediction models can be solved by using the forward finite difference method. Then, the probability density functions of strength redundancy of the structures can be obtained. Finally, the structural dynamic reliability can be calculated using integral method. The efficiency of the proposed method is demonstrated numerically through a speed reducer. The results have shown that the proposed method is practicable, feasible and gives reasonably accurate prediction.

설계, 개발 및 양산 정보를 활용한 신뢰성 지수 개발 (Development of a Reliability Index using Design, Development and Production Information)

  • 김성규;박정원;김용수
    • 품질경영학회지
    • /
    • 제43권3호
    • /
    • pp.373-382
    • /
    • 2015
  • Purpose: In this paper, we developed a reliability index (RI) to efficiently compare reliability of products based on the design, development and production information such as reliability tests, quality, product life-cycle management. RI also can be applied to reliability prediction of a novel product as well as comparison evaluation among existing products. Methods: For evaluating RI, we proposed evaluation process which is composed of five steps. Target modules are selected based on warranty data and correlation analysis. Scores of selected target modules are calculated by scoring function. Finally, weights of RI model are determined by optimization method. Results: This paper presented an empirical analysis based on failure data of mobile devices. In this case study, we demonstrated that there is a direct correlation between evaluated RI and field failure probability of each product. Conclusion: We proposed the index for comprehensive and effective assessment of product reliability level. From the procedure of this study, we expected to be applied for reliability estimation of novel products and deduction of field failure-related factors.

A Probabilistic based Systems Approach to Reliability Prediction of Solid Rocket Motors

  • Moon, Keun-Hwan;Gang, Jin-Hyuk;Kim, Dong-Seong;Kim, Jin-Kon;Choi, Joo-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.565-578
    • /
    • 2016
  • A probabilistic based systems approach is addressed in this study for the reliability prediction of solid rocket motors (SRM). To achieve this goal, quantitative Failure Modes, Effects and Criticality Analysis (FMECA) approach is employed to determine the reliability of components, which are integrated into the Fault Tree Analysis (FTA) to obtain the system reliability. The quantitative FMECA is implemented by burden and capability approach when they are available. Otherwise, the semi-quantitative FMECA is taken using the failure rate handbook. Among the many failure modes in the SRM, four most important problems are chosen to illustrate the burden and capability approach, which are the rupture, fracture of the case, and leak due to the jointed bolt and O-ring seal failure. Four algorithms are employed to determine the failure probability of these problems, and compared with those by the Monte Carlo Simulation as well as the commercial code NESSUS for verification. Overall, the study offers a comprehensive treatment of the reliability practice for the SRM development, and may be useful across the wide range of propulsion systems in the aerospace community.

연구 도구의 신뢰성과 타당성에 대한 메타분석: 우리 나라 경영정보학 연구를 중심으로 (A Meta-Analysis of Reliability and Validity of Research Instruments in Korean MIS Research)

  • 김종기;임호섭;이동호
    • Asia pacific journal of information systems
    • /
    • 제11권4호
    • /
    • pp.81-98
    • /
    • 2001
  • This study investigates the reliability and validity of research instruments used in Korean MIS research. Examination of reliability and validity is a necessary process for establishing proper arguments based on research results. We examined 172 MIS research articles published in four major Korean journals between 1990 and 1999. Among them, 79 papers which used multivariate research methods were analyzed in this study. The relationships between reliability measures and several research design characteristics were examined. We found that scale format and the number of items used to measure a construct were significantly correlated with reliability measure. About 27 percent of the articles we examined did not perform validity analysis. Based on the findings in our study, we proposed a checklist for presenting data validation analysis.

  • PDF

Factor-analysis based questionnaire categorization method for reliability improvement of evaluation of working conditions in construction enterprises

  • Lin, Jeng-Wen;Shen, Pu Fun
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.973-988
    • /
    • 2014
  • This paper presents a factor-analysis based questionnaire categorization method to improve the reliability of the evaluation of working conditions without influencing the completeness of the questionnaire both in Taiwanese and Chinese construction enterprises for structural engineering applications. The proposed approach springs from the AI application and expert systems in structural engineering. Questions with a similar response pattern are grouped into or categorized as one factor. Questions that form a single factor usually have higher reliability than the entire questionnaire, especially in the case when the questionnaire is complex and inconsistent. By classifying questions based on the meanings of the words used in them and the responded scores, reliability could be increased. The principle for classification was that 90% of the questions in the same classified group must satisfy the proposed classification rule and consequently the lowest one was 92%. The results show that the question classification method could improve the reliability of the questionnaires for at least 0.7. Compared to the question deletion method using SPSS, 75% of the questions left were verified the same as the results obtained by applying the classification method.

서비스 블루프린트와 FTA를 이용한 서비스 신뢰도 평가모델 (Evaluation Model of Service Reliability Using a Service Blueprint and FTA)

  • 유정상;오형술
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.194-201
    • /
    • 2012
  • Because the difference between products and services are getting less and less, service and manufacturing companies' efforts are increasingly focused on utilizing services to satisfy customers' needs under today's competitive market environment. The value of services depends on service reliability that is identified by satisfaction derived from the relationship between customer needs and service providers. In this paper, we extend concepts from the fault tree analysis for reliability analysis of tangible systems to services. We use an event-based process model to facilitate service design and represent the relationships between functions and failures in a service. The objective of this research is to propose a method for evaluating service reliability based on service processes using service blueprint and FTA. We can identify the failure mode of service in a service delivery process with a service blueprint. The fuzzy membership function is used to characterize the probability of failure based on linguistic terms. FTA is employed to estimate the reliability of service delivery processes with risk factors that are represented as potential failure causes. To demonstrate implementation of the proposed method, we use a case study involving a typical automotive service operation.