• Title/Summary/Keyword: Relay Attacks

Search Result 20, Processing Time 0.025 seconds

Emerging Image Cue CAPTCHA Resisting Automated and Human-Solver-Based Attacks (자동화 공격과 릴레이 공격에 저항하는 Emerging Image Cue CAPTCHA 연구)

  • Yang, Wonseok;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.531-539
    • /
    • 2017
  • CAPTCHA is a verification scheme whether or not a human user has made a service request. Most CAPTCHAs that are based on text, image, or simple game suffer from vulnerability that can be compromised by automated attacks and stream relay attacks. To resist such attacks, CAPTCHA that utilizes human recognition as been suggested but it show poor usability for deploying in the Internet. We propose an Emerging Image Cue CAPTCHA that offers improved usability and resists stream relay attacks, as well. We also examine the usability of the proposed CAPTCHA and investigate the attack resistance by conducting user study and experiments on simulated network environment.

Detecting a Relay Attack with a Background Noise (소리를 이용한 릴레이 공격 공격의 탐지)

  • Kim, Jonguk;Kang, Sukin;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.4
    • /
    • pp.617-627
    • /
    • 2013
  • Wireless communication technology such as NFC and RFID makes the data transfer between devices much easier. Instead of the irksome typing of passwords, users are able to simply authenticate themselves with their smart cards or smartphones. Relay attack, however, threatens the security of token-based, something-you-have authentication recently. It efficiently attacks the authentication system even if the system has secure channels, and moreover it is easy to deploy. Distance bounding or localization of two devices has been proposed to detect relay attacks. We describe the disadvantages and weakness of existing methods and propose a new way to detect relay attacks by recording a background noise.

A Light-Weight RFID Distance Bounding Protocol (경량 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Bu, Ki-Dong;Yoon, Eun-Jun;Nam, In-Gil
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Recently, it is proved that contactless smart-card based RFID tags, which is used for proximity authentication, are vulnerable to relay attacks with various location-based attacks such as distance fraud, mafia fraud and terrorist fraud attacks. Moreover, distance bounding protocols have been researched to prevent these relay attacks that can measure the message transmitted round-trip time between the reader and the tag. In 2005, Hancke and Kuhn first proposed an RFID distance bounding protocol based on secure hash function. However, the Hancke-Kuhn protocol cannot completely prevent the relay attacks because an adversary has (3/4)$^n$ attack success probability. Thus, this paper proposes a new distance-bounding protocol for light-weight RFID systems that can reduce to (5/8)$^n$ for the adversary's attack success probability. As a result, the proposed protocol not only can provide high-space efficient based on a secure hash function and XOR operation, but also can provide strong security against the relay attacks because the adversary's attack success probability is optimized to (5/8)$^n$.

A Storage and Computation Efficient RFID Distance Bounding Protocol (저장 공간 및 연산 효율적인 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Bu, Ki-Dong;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1350-1359
    • /
    • 2010
  • Recently many researchers have been proved that general RFID system for proximity authentication is vulnerable to various location-based relay attacks such as distance fraud, mafia fraud and terrorist fraud attacks. The distance-bounding protocol is used to prevent the relay attacks by measuring the round trip time of single challenge-response bit. In 2008, Munilla and Peinado proposed an improved distance-bounding protocol applying void-challenge technique based on Hancke-Kuhn's protocol. Compare with Hancke-Kuhn's protocol, Munilla and Peinado's protocol is more secure because the success probability of an adversary has (5/8)n. However, Munilla and Peinado's protocol is inefficient for low-cost passive RFID tags because it requires large storage space and many hash function computations. Thus, this paper proposes a new RFID distance-bounding protocol for low-cost passive RFID tags that can be reduced the storage space and hash function computations. As a result, the proposed distance-bounding protocol not only can provide both storage space efficiency and computational efficiency, but also can provide strong security against the relay attacks because the adversary's success probability can be reduced by $(5/8)^n$.

RFID Distance Bounding Protocol Using Multiple Bits Challenge and Response (다중 비트 시도와 응답을 이용한 RFID 거리 한정 프로토콜)

  • Jeon, Il-Soo;Yoon, Eun-Jun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.19-26
    • /
    • 2012
  • To resist the relay attacks in RFID system, it is commonly used RFID distance bounding protocols using the round trip time measurement for 1 bit challenge and response between a reader and a tag. If the success probability of relay attacks for the 1 bit challenge and response can be reduced in these protocols, it is possible to make an efficient distance bounding protocol. In this paper, we propose an efficient RFID distance bounding protocol based on 2 bit challenge and response which is modified the RFID distance bounding protocol proposed by Hancke and Khun based on 1 bit challenge and response. The success probability of relay attack for the proposed protocol is (7/16)n for the n times of challenge and response, which is much lower than (3/4)n given by Hancke and Khun's protocol.

Network Session Analysis For BotNet Detection (봇넷 탐지를 위한 네트워크 세션 분석)

  • Park, Jong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2689-2694
    • /
    • 2012
  • In recent years, cyber crimes were intended to get financial benefits through malicious attempts such as DDoS attacks, stealing financial information and spam. Botnets, a network composed of large pool of infected hosts, lead such malicious attacks. The botnets have adopted several evasion techniques and variations. Therefore, it is difficult to detect and eliminate them. Current botnet solutions use a signature based detection mechanism. Furthermore, the solutions cannot cover broad areas enough to detect world-wide botnets. In this paper, we propose IRC (Internet Relay Chat) that is used to control the botnet communication in a session channel of IRC servers connected through the analysis of the relationship of the channel and the connection with the server bot-infected hosts and how to detect.

Experimental Analysis of Physical Signal Jamming Attacks on Automotive LiDAR Sensors and Proposal of Countermeasures (차량용 LiDAR 센서 물리적 신호교란 공격 중심의 실험적 분석과 대응방안 제안)

  • Ji-ung Hwang;Yo-seob Yoon;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • LiDAR(Light Detection And Ranging) sensors, which play a pivotal role among cameras, RADAR(RAdio Detection And Ranging), and ultrasonic sensors for the safe operation of autonomous vehicles, can recognize and detect objects in 360 degrees. However, since LiDAR sensors use lasers to measure distance, they are vulnerable to attackers and face various security threats. In this paper, we examine several security threats against LiDAR sensors: relay, spoofing, and replay attacks, analyze the possibility and impact of physical jamming attacks, and analyze the risk these attacks pose to the reliability of autonomous driving systems. Through experiments, we show that jamming attacks can cause errors in the ranging ability of LiDAR sensors. With vehicle-to-vehicle (V2V) communication, multi-sensor fusion under development and LiDAR anomaly data detection, this work aims to provide a basic direction for countermeasures against these threats enhancing the security of autonomous vehicles, and verify the practical applicability and effectiveness of the proposed countermeasures in future research.

Physical Layer Security in Underlay CCRNs with Fixed Transmit Power

  • Wang, Songqing;Xu, Xiaoming;Yang, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.260-279
    • /
    • 2015
  • In this paper, we investigate physical layer security for multiple decode-and-forward (DF) relaying underlay cognitive radio networks (CRNs) with fixed transmit power at the secondary network against passive eavesdropping attacks. We propose a simple relay selection scheme to improve wireless transmission security based on the instantaneous channel information of all legitimate users and the statistical information about the eavesdropper channels. The closed-form expressions of the probability of non-zero secrecy capacity and the secrecy outage probability (SOP) are derived over independent and non-identically distributed Rayleigh fading environments. Furthermore, we conduct the asymptotic analysis to evaluate the secrecy diversity order performance and prove that full diversity is achieved by using the proposed relay selection. Finally, numerical results are presented to verify the theoretical analysis and depict that primary interference constrain has a significant impact on the secure performance and a proper transmit power for the second transmitters is preferred to be energy-efficient and improve the secure performance.

A Relay-assisted Secure Handover Mechanism for High-speed Trains

  • Zhao, Yue;Tian, Bo;Chen, Zhouguo;Yang, Jin;Li, Saifei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.582-596
    • /
    • 2019
  • Considering that the existing Long Term Evolution is not suitable for the fast and frequent handovers of high-speed trains, this paper proposes a relay-assisted handover mechanism to solve the problems of long handover authentication time and vulnerable to security attacks. It can achieve mutual authentication for train-ground wireless communication, and data transmission is consistent with one-time pad at the same time. The security analysis, efficiency analysis and simulation results show that the proposed mechanism not only realizes the forward security and resists many common attacks, but also effectively reduces the computational overhead of train antenna during the secure handover process. When the running speed of a train is lower than 500km/h, the handover delay is generally lower than 50ms and the handover outage probability is less than 1.8%. When the running speed of a train is 350km/h, the throughput is higher than 16.4mbps in the process of handover. Therefore, the secure handover mechanism can improve the handover performance of high-speed trains.

A Statistical Detection Method to Detect Abnormal Cluster Head Election Attacks in Clustered Wireless Sensor Networks (클러스터 기반 WSN에서 비정상적인 클러스터 헤드 선출 공격에 대한 통계적 탐지 기법)

  • Kim, Sumin;Cho, Youngho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1165-1170
    • /
    • 2022
  • In WSNs, a clustering algorithm groups sensor nodes on a unit called cluster and periodically selects a cluster head (CH) that acts as a communication relay on behalf of nodes in each cluster for the purpose of energy conservation and relay efficiency. Meanwhile, attack techniques also have emerged to intervene in the CH election process through compromised nodes (inside attackers) and have a fatal impact on network operation. However, existing countermeasures such as encryption key-based methods against outside attackers have a limitation to defend against such inside attackers. Therefore, we propose a statistical detection method that detects abnormal CH election behaviors occurs in a WSN cluster. We design two attack methods (Selfish and Greedy attacks) and our proposed defense method in WSNs with two clustering algorithms and conduct experiments to validate our proposed defense method works well against those attacks.