• Title/Summary/Keyword: Relative displacement measurement

Search Result 51, Processing Time 0.033 seconds

Earth pressure of vertical shaft considering arching effect in layered soils (다층지반에서의 아칭현상에 의한 수직갱 토압)

  • Lee, In-Mo;Moon, Hong-Pyo;Lee, Dea-Su;Kim, Kyung-Ryeol;Cho, Man-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • A new earth pressure equation acting on the vertical shafts in cohesionless soils has been proposed by modifying the equations proposed by others. In order to verify the modified equation, model tests which can control uniform wall displacement with depth to radial direction were conducted. Model tests were performed with three different wall friction angles and two different relative densities. The measured values were larger than estimated values when assuming $\lambda=1$ ; smaller than those when assuming $\lambda=1-sin\phi$. The parameter, $\lambda$ is the ratio of tangential stress to vertical stress and is the most critical value in proposed equation. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by reasonably assuming the failure surface of layered soils and using the modified equation. In order to verify the proposed method, in-situ measurement data have been collected from the three in-situ vertical shafts installed in layered soils. Most of earth pressures converted from measured data match reasonably well with estimated values using proposed method.

  • PDF

Implementation and Performance Evaluation of a Precision Localizing Device for Hyperloop Pods Driving at Ulta-High Speeds (초고속주행 하이퍼루프 포드의 정밀 위치측정 장치 구현 및 성능평가)

  • Ok, Min-Hwan;Choi, Su-Yong;Choe, Jae-Heon;Lee, Kwan-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.443-451
    • /
    • 2020
  • A futuristic locomotion system called Hyperloop is projected for driving at ulta-high speed, levitated in the tube. In hyperloop localization of pods on the linear synchronous motor is essential for pod driving. precision localization is required for acceleration and deceleration of pods driving at speed above 1,000km/h, and also required for adjusting the pod speed driving at this very-high speed to maintain inter-vehicle distance. In this work, a new scale of localization is challenged by modified laser surface velocimeter. In acceleration the speed of a virtual pod is calculated along its displacement measured by laser reflection. Under the requirement of precise localization of the pod driving at ultra-high speed, a displacement measurement device, which detects the difference in reflections from tiles passing by the pod, is developed and evaluated through performance test. Tests of pod speeds below 500km/h have showed exact localization results of the precision in centimeters, and tests of pod speeds above 500km/h have showed localization with very low error rates under 0.1%. For the measurement above 500km/h, future works would pursue the error rate converges to zero.

Back Analysis of Field Measurements Around the Tunnel with the Application of Genetic Algorithms (유전자 알고리즘을 이용한 터널 현장 계측 결과의 역해석)

  • Kim Sun-Myung;Yoon Ji-Sun;Jun Duk-Chan;Yoon Sang-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.69-78
    • /
    • 2004
  • In this study, the back analysis program was developed by applying the genetic algorithm, one of artificial intelligence fields, to the direct method. The optimization process which has influence on the efficiency of the direct method was modulated with genetic algorithm. On conditions that the displacement computed by forward analysis for a certain rock mass model was the same as the displacement measured at the tunnel section, back analysis was executed to verify the validity of the program. Usefulness of the program was confirmed by comparing relative errors calculated by back analysis, which is carried out under the same rock mass conditions as analysis model of Gens et at (1987), one of back analysis case in the past. We estimated the total displacement occurring by tunnelling with the crown settlement and convergence measured at the working faces in three tunnel sites of Kyungbu Express railway. Those data measured at the working face are used for back analysis as the input data after confidence test. As the results of the back analysis, we comprehended the tendency of tunnel behaviors with comparing the respective deformation characteristics obtained by the measurement at the working face and by back analysis. Also the usefulness and applicability of the back analysis program developed in this study were verified.

Measurement of the Shear Modulus of an Ultrasound Tissue Phantom (초음파 연조직 팬텀에서 횡탄성의 측정)

  • Park, Jeong-Man;Choi, Seung-Min;Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.399-409
    • /
    • 2012
  • In this paper we propose a method for measuring the shear modulus of an ultrasound soft tissue phantom using an acoustic radiation force. The proposed method quantitatively determines the shear modulus based on the rise time of a displacement induced by an acoustic radiation force at the focal point of a focused ultrasound beam. The shear wave speed and shear modulus obtained from the proposed method and a shear wave propagation method were compared to verify the validity of the proposed method. In the shear wave propagation method, the shear modulus is first computed by measuring the propagating speed of a shear wave induced in a phantom by a limited-diffraction transmit field, and then was compared to that obtained with the proposed method in an ultrasound data acquisition system calibrated based on the first computed shear modulus. The relative errors between the two methods were found to be 4% for shear wave speed and less than 9% for shear modulus, confirming the usefulness of the proposed method.

Buildability of 3D Printed Concrete Structures at Various Nozzle Speeds and Aspect Ratios (노즐이동속도와 변장비에 따른 3D 프린팅 콘크리트 구조물의 시공성)

  • Park, Ji-Hun;Lee, Jungwoo;Joh, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.375-382
    • /
    • 2019
  • In this study, an experimental study on the buildability of the structure using the developed printing materials and equipment was performed. Experimental variables included the moving speed of nozzles(=80 and 100mm/s), the revolutions per minute (RPM) of screw in discharge buckets, and the aspect ratio(=1.67 and 5.00) reflecting wall length of the structures. Buildability of the 3D printed concrete structures was analyzed based on the maximum decomposition layer and collapse patterns of the structures according to the experimental variables. The nozzle movement speed of 80mm/s and the aspect ratio of 1.67 were favorable for 3D printing in this study. The collapse process of structure due to uneven layer decomposition was also analyzed through the relative displacement measurement of the lower part of the structure during printing.

Development of a Metrological Atomic Force Microscope for the Length Measurements of Nanometer Range (나노미터 영역 길이 측정 위한 미터 소급성을 갖는 원자간력 현미경 개발)

  • 김종안;김재완;박병천;엄태봉;홍재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.75-82
    • /
    • 2004
  • A metrological atomic force microscope (M-AFM) was developed fur the length measurements of nanometer range, through the modification of a commercial AFM. To eliminate nonlinearity and crosstalk of the PZT tube scanner of the commercial AFM, a two-axis flexure hinge scanner employing built-in capacitive sensors is used for X-Y motion instead of PZT tube scanner. Then two-dimensional displacement of the scanner is measured using two-axis heterodyne laser interferometer to ensure the meter-traceability. Through the measurements of several specimens, we could verify the elimination of nonlinearity and crosstalk. The uncertainty of length measurements was estimated according to the Guide to the Expression of Uncertainty in Measurement. Among several sources of uncertainty, the primary one is the drift of laser interferometer output, which occurs mainly from the variation of refractive index of air and the thermal stability. The Abbe error, which is proportional to the measured length, is another primary uncertainty source coming from the parasitic motion of the scanner. The expanded uncertainty (k =2) of length measurements using the M-AFM is √(4.26)$^2$+(2.84${\times}$10$^{-4}$ ${\times}$L)$^2$(nm), where f is the measured length in nm. We also measured the pitch of one-dimensional grating and compared the results with those obtained by optical diffractometry. The relative difference between these results is less than 0.01 %.

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

A Practical standard Air Flow Generator System to Calibrate and Compare Performance of Two Different Respiratory Air Flow Measurement Modules (호흡기류 계측모듈의 교정과 성능 비교를 위한 실용적인 표준기류 생성 시스템)

  • Lee, In-Kwang;Park, Mi-Jung;Lee, Sang-Bong;Kim, Kyoung-Ok;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.115-122
    • /
    • 2015
  • A standard air flow generator system was developed to generate air flows of various levels simultaneously applied to two different air flow transducer modules. Axes of two identical standard syringes for spirometer calibration were connected with each other and driven by a servo-motor. Linear displacement transducer was also connected to the syringe axis to accurately acquire the volume change signal. The user can select either sinusoidal or square waveform of volume change and manually input any volume as well as maximal flow rate levels ranging 0~3 l and 0~15 l/s, respectively. Various volume and flow levels were input to operate the system, then the volume signal was acquired followed by numerical differentiation to obtain the air flow signal. The measured volumes and maximal air flow rates were compared with the user input data. The relative errors between the user-input and the measured stroke volumes were all within 0.5%, demonstrating very accurate driving of the system. In case of the maximal flow rate, relatively large error was observed when the syringe was driven very fast within a very short time duration. However, except for these few data, most measured flow rates revealed relative errors of approximately 2%. When the measure and user-input stroke volume and maximal flow rate data were analyzed by linear regression analysis, respectively, the correlation coefficients were satisfactorily higher than 0.99 (p < 0.0001). These results demonstrate that the servo-motor controls the syringes with enough accuracy to generate standard air flows. Therefore, the present system would be very much practical for calibration process as well as performance evaluation and comparison of two different air flow transducer modules.

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

Accuracy Evaluation of Respiratory Air Flow Transducer for Artificial Ventilation (인공호흡시 호흡기류 계측 센서의 정확도 평가)

  • Lee, In-Kwang;Park, Mi-Jung;Kim, Kyoung-Ok;Shin, Eun-Young;Shon, Ho-Sun;Cha, Eun-Jong;Kim, Kyung-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.425-431
    • /
    • 2015
  • Measurement accuracy was evaluated for the respiratory air flow transducer developed for applications under emergent situations. Pressure-Flow calibration equation was obtained by acquisition of air flow signals from the transducer in response to 6 flow waveforms, similar to those of artificial ventilation, generated by the standard flow generator system. Tidal volume and maximal flow rate were calculated on the flow signal then compared with the error-free data obtained by the linear displacement transducer of the flow generator system. Mean relative error of the tidal volume was within 3% and that of the maximal flow rate, approximately 5%, demonstrating accurate enough measurements. Therefore, the transducer could be applied to emergent situations to monitor the respiratory air flow signal as well as diagnostic parameters in real time.