Browse > Article

Back Analysis of Field Measurements Around the Tunnel with the Application of Genetic Algorithms  

Kim Sun-Myung (Geotechnical/tunnel Div., Bau Consultant Co., LTD.)
Yoon Ji-Sun (School of Civil Engrg., Collage of Engrg., Inha Univ.)
Jun Duk-Chan (Geotechnical/tunnel Div., Bau Consultant Co., LTD.)
Yoon Sang-Gil (Geotechnical/tunnel Div., Bau Consultant Co., LTD.)
Publication Information
Journal of the Korean Geotechnical Society / v.20, no.7, 2004 , pp. 69-78 More about this Journal
Abstract
In this study, the back analysis program was developed by applying the genetic algorithm, one of artificial intelligence fields, to the direct method. The optimization process which has influence on the efficiency of the direct method was modulated with genetic algorithm. On conditions that the displacement computed by forward analysis for a certain rock mass model was the same as the displacement measured at the tunnel section, back analysis was executed to verify the validity of the program. Usefulness of the program was confirmed by comparing relative errors calculated by back analysis, which is carried out under the same rock mass conditions as analysis model of Gens et at (1987), one of back analysis case in the past. We estimated the total displacement occurring by tunnelling with the crown settlement and convergence measured at the working faces in three tunnel sites of Kyungbu Express railway. Those data measured at the working face are used for back analysis as the input data after confidence test. As the results of the back analysis, we comprehended the tendency of tunnel behaviors with comparing the respective deformation characteristics obtained by the measurement at the working face and by back analysis. Also the usefulness and applicability of the back analysis program developed in this study were verified.
Keywords
Back analysis; Field measurements; Genetic algorithms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chamber, L. (1995), Practical Handbook of Genetic Algorithms, Vol.1, CRC Press, Inc., pp.436-440
2 Gens, A., Ledesma, A. and Alonso, E. E. (1987), 'Maximum Likelihood Parameter and Variance Estimation in Geotechnical Back Analysis', Proc. 5th Int, Conf. Applications of Statistics and Prob. in soil and Struct. Eng., pp.613-621
3 Hanafy, E. A and J. J. Emery (1980), 'Advancing face simulation of tunnel excavation and lining placement', 13th Canadian Rock Mechanics Symp., CIMM, Montreal, pp.119-125
4 Hoek E. and E. T. Brown (1997), 'Practical estimates of rock mass strength', Int, J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.34, No.8, pp.1165-1186   DOI
5 Otsuka, M. and T. Kondoh (1981), 'On the displacement fore-casting methods and their application to tunnelling by NATM', Int. Symp. on Weak Rock, Tokyo, pp.945-950
6 Serafim, L. J. and P. J. Pereira (1983), 'Consideration on the geomechanical classification of Bieniawski', Proc. of the Int. Symp. on Engineering Geology and Underground Construction, Vol.2, pp.33-42
7 Mohammad, N., D. J. Reddish and L. R. Stace (1997), 'The Relation between In Situ and Laboratory Rock Properties used in Numerical Modelling', Technical Note, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.34, No.2, pp.289-297   DOI   ScienceOn
8 Srinivas, L.M. Patnaik (1994), 'Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms', IEEE Trans on SMC, Vol.24, No.2, pp.656-667
9 Aydan, O., Ulusay, R, Kawamoto, T. (1997), 'Assessment of rock mass strength for underground excavation', Proceddings of the 1997 36th US Rock Mechanics ISRM International Symposium International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.3, pp.705
10 Hoek, E. and E. T. Brown (1980), Underground Excavations in Rock, Institution of Mining and Metallurgy, pp.493511
11 Nicholson, G. A. and Z. T. Bieniawski (1990), 'A nonlinear deformation modulus based on rock mass classification', Int. J. Min. & Geological Engng., 8, pp.181-202   DOI
12 Panet, M., and A Guenot (1982), 'Analysis of convergence behind the face of tunnel', Tunnelling 82, IMM, Brighton, pp.197-204
13 Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Univ. Michigan, Ann Arbor, MI.
14 Sakurai, S. and Takeuchi, K. (1983), 'Back Analysis of Measured Displacements of Tunnels', Rock Mech. Rock Eng. 16, 1983, pp.173-180
15 Goldberg, D. E (1989), 'Genetic Algorithm in Search', Optimization & Machine earning, Addison-Wesley
16 Vassilev, V. H. and T. N. Hrisstov (1988), 'Influence of the heading face and a two dimensional calculation model of tunnel linings', 6th Int. Conf. on Numer. Methods in Geomech., lnnsbruck, Vol.3, pp.279-289
17 Mitri, H. S., R. Edrissi and J. Henning (1994), 'Finite element modelling of cable-bolted stopes in hard rock underground mines', SME Annual Meeting, Paper No.94-116
18 Sulem J., Panet M. and Guenot A. (1987a), 'Closure analysis in deep tunnels', Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol.24, No.3, pp.145-154   DOI   ScienceOn
19 Bieniawski, Z. T. (1978), 'Determination of rock mass defor-mability : Experience from case histories', Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 15, pp.237-247   DOI   ScienceOn
20 Ledesma A., Gens A. and Alonso E. E. (1996), 'Estimation of Parameters in Geotechnical Back analysis - I. Maximum Likelihood Approach', Computers and Geomechanics, Vol.8, No.1, pp.1-27
21 Cividiai, A, Jurina, L. and Gioda, G. (1981), 'Some Aspects of Characterization Problems in Geomechanics', Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 18 pp.487-503   DOI   ScienceOn
22 Goldberg, D. E, and Deb, K. (1991), 'A Comparative Analysis of Selection Schemes used in Genetic Algorithms', Foundations of Genetic Algorithms, Morgan Kaufmann. pp.69-93