DOI QR코드

DOI QR Code

Measurement of the Shear Modulus of an Ultrasound Tissue Phantom

초음파 연조직 팬텀에서 횡탄성의 측정

  • Received : 2012.04.19
  • Accepted : 2012.06.25
  • Published : 2012.08.31

Abstract

In this paper we propose a method for measuring the shear modulus of an ultrasound soft tissue phantom using an acoustic radiation force. The proposed method quantitatively determines the shear modulus based on the rise time of a displacement induced by an acoustic radiation force at the focal point of a focused ultrasound beam. The shear wave speed and shear modulus obtained from the proposed method and a shear wave propagation method were compared to verify the validity of the proposed method. In the shear wave propagation method, the shear modulus is first computed by measuring the propagating speed of a shear wave induced in a phantom by a limited-diffraction transmit field, and then was compared to that obtained with the proposed method in an ultrasound data acquisition system calibrated based on the first computed shear modulus. The relative errors between the two methods were found to be 4% for shear wave speed and less than 9% for shear modulus, confirming the usefulness of the proposed method.

본 논문에서는 초음파 연조직 팬텀에서 음향 복사력을 이용하여 횡탄성(shear modulus)을 측정하는 방법을 제안하였다. 이 방법은 집속 초음파 빔의 초점에서 음향 복사력에 의해 발생하는 변위의 상승시간에 기초하여 횡탄성을 정량적으로 산정한다. 제안한 방법의 타당성을 확인하기 위하여 횡파 전파법으로 측정한 횡파의 속도 및 횡탄성값 결과와 비교하였다. 횡파 전파법은 제한회절 송신음장에 의해 팬텀에서 발생하여 전파하는 횡파의 속도를 측정하여 횡탄성값을 계산하고, 이 값으로 교정된 데이터 획득 시스템에서 제안한 방법으로 측정한 횡탄성값을 횡파 전파법으로 측정한 값과 비교하여, 제안한 횡탄성 측정법의 유용성을 확인하였다. 두 방법 간의 상대오차는 횡파 속도는 4%로, 횡탄성값은 9% 이하로 계산되었다.

Keywords

References

  1. T. A. Krouskop, T. M. Wheeler, F. Kaller, B. S. Garra, and T. Hall, "Elastic moduli of breast and prostate tissues under compression," Ultrasonic Imaging, vol. 20, no. 4, pp. 260-274, 1998. https://doi.org/10.1177/016173469802000403
  2. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdiand, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, no. 2, pp. 111-134, 1991. https://doi.org/10.1016/0161-7346(91)90079-W
  3. T. Sato, Y. Yamakoshi, and T. Nakamura, "Nonlinear tissue imaging," in Proc. IEEE Ultrason. Symp., 1986, pp. 889-900.
  4. D. Yanwa, T. Jia, and S. Yongchen, "Relations between the acoustic nonlinearity parameter and sound speed and tissue composition," in Proc. IEEE Ultrason. Symp., 1987, pp. 931-934.
  5. P. He and A. McGoron, "Parameter estimation for nonlinear frequency dependent attenuation in soft tissue," Ultrasound Med. Biol., vol. 15, no. 8, pp. 757-763, 1989. https://doi.org/10.1016/0301-5629(89)90116-6
  6. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., vol. 24, no. 9, pp. 1419-1435, 1998. https://doi.org/10.1016/S0301-5629(98)00110-0
  7. J. Bercoff, M. Tanter, and M. Fink, "Supersonic shear imaging: A new technique for soft tissue elasticity mapping," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 4, pp. 396-409, Apr. 2004. https://doi.org/10.1109/TUFFC.2004.1295425
  8. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, "Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging," Ultrasound Med. Biol., vol. 34, no. 9, pp. 1373-1386, Sept. 2008. https://doi.org/10.1016/j.ultrasmedbio.2008.02.002
  9. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust. Soc. Am., vol. 110, no. 1, pp. 625-634, July 2001. https://doi.org/10.1121/1.1378344
  10. K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust. Soc. Am., vol. 110, no. 1, pp. 625-634, July 2001. https://doi.org/10.1121/1.1378344
  11. B. J. Fahey, K. R. Nightingale, R. C. Nelson, M. L. Palmeri, and G. E. Trahey, "Acoustic radiation force impulse imaging of the abdomen: Demonstration of feasibility and utility," Ultrasound Med. Biol., vol. 31, no. 9, pp. 1185-1198, 2005. https://doi.org/10.1016/j.ultrasmedbio.2005.05.004
  12. R. S. Lazebnik, "Tissue strain analytics: Virtual touch tissue imaging and quantification," [Online]. Available: http://www.medical.siemens.com/siemens/sv_SE/gg_us_FBAs/files/misc_downloads/Whitepaper_VirtualTouch.pdf.
  13. D. K. Ahn and M. K. Jeong, "Ultrasound phantom based on plastic material for elastography," J. Korea Society for Nondistructive Testing, vol. 29, no. 4, pp. 368-373, 2009.
  14. G. J. Lee, D. H. Park, T. M. Shin and J. B. Seo, "Analysis of properties and phantom design based on plastic hardener and softener for ultrasonic imaging," J. Biomed. Eng. Res., vol. 29, no. 4, pp. 302-306, 2008.
  15. M. Fink, L. Sandrin, M. Tanter, S. Catheline, S. Chaffai, J. Bercoff, and J.-L. Gennisson, "Ultra high speed imaging of elasticity,"in Proc IEEE Ultrason. Symp., pp. 1811-1820. 2002.
  16. 최승민, 박정만, 권성재, 정목근, "초음파 의료 영상에서 비집속 송신을 이용한 고속 음향 복사력 영상법," 한국음향학회지, 31권, 3호, pp. 151-160, 2012.
  17. 최승민, 박명기, 박정만, 권성재, 정목근, "초음파 의료용 탄성 영상에서 제한 회절 음장," 한국음향학회 추계학술대회, 29권, 2(s)호, pp. 599-601, 2010.
  18. 박정만, 권성재, 정목근, "점성 조직에서 음향 복사력에 의해 발생된 변위 특성," 새물리, 60권, 12호, pp. 1268-1281, 2010.
  19. O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, "Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium," J. Acoust. Soc. Am., vol. 99, no. 5, pp. 2791-2798, 1996. https://doi.org/10.1121/1.414805

Cited by

  1. Advances in ultrasound elasticity imaging vol.7, pp.2, 2017, https://doi.org/10.1007/s13534-017-0014-7