DOI QR코드

DOI QR Code

Buildability of 3D Printed Concrete Structures at Various Nozzle Speeds and Aspect Ratios

노즐이동속도와 변장비에 따른 3D 프린팅 콘크리트 구조물의 시공성

  • Park, Ji-Hun (Department of Civil Engineering, Kunsan National University) ;
  • Lee, Jungwoo (Structural Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Joh, Changbin (Structural Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Yang, In-Hwan (Department of Civil Engineering, Kunsan National University)
  • 박지훈 (군산대학교 토목공학과) ;
  • 이정우 (한국건설기술연구원 인프라안전연구본부) ;
  • 조창빈 (한국건설기술연구원 인프라안전연구본부) ;
  • 양인환 (군산대학교 토목공학과)
  • Received : 2019.10.24
  • Accepted : 2019.12.09
  • Published : 2019.12.30

Abstract

In this study, an experimental study on the buildability of the structure using the developed printing materials and equipment was performed. Experimental variables included the moving speed of nozzles(=80 and 100mm/s), the revolutions per minute (RPM) of screw in discharge buckets, and the aspect ratio(=1.67 and 5.00) reflecting wall length of the structures. Buildability of the 3D printed concrete structures was analyzed based on the maximum decomposition layer and collapse patterns of the structures according to the experimental variables. The nozzle movement speed of 80mm/s and the aspect ratio of 1.67 were favorable for 3D printing in this study. The collapse process of structure due to uneven layer decomposition was also analyzed through the relative displacement measurement of the lower part of the structure during printing.

본 연구에서는 개발된 프린팅 재료 및 장비를 사용하여 대상 구조물의 시공성을 파악하기 위하여 기초 성능평가 프린팅 실험을 수행하였다. 3D 프린팅 콘크리트 구조물의 시공성은 콘크리트 필라멘트 재료 특성, 시공 프로세스 및 구조물의 기하특성에 영향을 받는다. 따라서, 콘크리트 구조물의 적층하는 동안의 시공성을 파악하기 위한 실험변수로서 노즐 이동속도(=80 및 100mm/s), 토출 버킷의 스크류 분당회전속도 (RPM) 및 구조물 벽체 길이의 변장비(1.67 및 5.00)를 고려하였다. 실험변수에 따른 3D 콘크리트 구조물의 최대 적층 수 및 파괴 패턴을 토대로 시공성을 분석하였다. 본 연구에서, 80mm/s의 노즐 이동속도 및 1.67의 변장비가 3D 프린팅 시공성에 유리함을 나타낸다. 또한, 적층 시 구조물 하단부의 상대변위측정을 통해 구조물의 전도 파괴 과정을 분석하였다.

Keywords

References

  1. Buswell, R.A., Leal de Silva, W.R., Jonesc, S.Z., Dirrenberger, J. (2018). 3D printing using concrete extrusion: a roadmap for research, Cement and Concrete Research, 112, 37-49. https://doi.org/10.1016/j.cemconres.2018.05.006
  2. Damme, H.V. (2018). Concrete material science: past, present, and future innovations, Cement and Concrete Research, 112, 5-24. https://doi.org/10.1016/j.cemconres.2018.05.002
  3. Feng, P., Meng, X., Chen, J.F., Ye, L. (2015). Mechanical properties of structures 3D printed with cementitious powders, Construction and Building Materials, 93, 486-497. https://doi.org/10.1016/j.conbuildmat.2015.05.132
  4. Gosselin, C., Duballet, R., Roux, P., Gaudillire, N., Dirrenberger, J., Morel, P. (2016). Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders, Materials and Design, 100, 102-109. https://doi.org/10.1016/j.matdes.2016.03.097
  5. Hambach, M., Volkmer, D. (2017). Properties of 3D-printed fiber-reinforced Portland cement paste, Cement and Concrete Composites, 79, 62-70. https://doi.org/10.1016/j.cemconcomp.2017.02.001
  6. Hong, S.G., Park, J.S., Kim, N.H. (2018). Structural stability in concrete 3D printing construction, Journal of the Korea Concrete Institute, 30(4), 345-352 [in Korean]. https://doi.org/10.4334/JKCI.2018.30.4.345
  7. Khoshnevis, B. (2004). Automated construction by contour crafting related robotics and information technologies, Automation in Construction, 13, 5-19. https://doi.org/10.1016/j.autcon.2003.08.012
  8. Le, T.T., Austin, S.A., Lim, S., Buswell, R.A., Law, R., Gibb, A.G.F., Thorpe, T. (2012). Hardened properties of high-performance printing concrete, Cement and Concrete Research, 42, 558-566. https://doi.org/10.1016/j.cemconres.2011.12.003
  9. Panda, B., Lim, J.H., Tan, M.J. (2019). Mechanical properties and deformation behaviour of early age concrete in the context of digital construction, Composites Part B, 165, 563-571. https://doi.org/10.1016/j.compositesb.2019.02.040
  10. Panda, B., Paul, S.C., Tan, M.J. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Materials Letters, 209, 146-149. https://doi.org/10.1016/j.matlet.2017.07.123
  11. Park, S.M., Kim, K.J., Kim, W.S., Jeong, Y.S., Lee, J.H. (2017). Evaluation of fracture energy for concrete interfaces formed before initial setting depending on elapsed time to meet new concrete layer, Journal of the Korea Concrete Institute, 29(5), 471-481 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.5.471
  12. Rebolj, D., Fischer, M., Endy, D., Moore, T., Sorgo, A. (2011). Can we grow buildings? Concepts and requirements for automated nano-to meter-scale building, Advanced Engineering Informatics, 25, 390-398. https://doi.org/10.1016/j.aei.2010.08.006
  13. Salet, T.A.M., Ahmed, Z.Y., Bos, F.P., Laagland, H.L.M. (2018). Design of a 3D printed concrete bridge by testing, Virtual and Physical Prototyping, 13(3), 222-236. https://doi.org/10.1080/17452759.2018.1476064
  14. Wolfs, R.J.M., Bos, F.P., Salet, T.A.M. (2018a). Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing, Cement and Concrete Research, 106, 103-116. https://doi.org/10.1016/j.cemconres.2018.02.001
  15. Wolfs, R.J.M., Bos, F.P., Salet, T.A.M. (2018b). Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete, Concrete and Building Materials, 181, 447-454. https://doi.org/10.1016/j.conbuildmat.2018.06.060
  16. Wu, P., Wang, J., Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry, Automation in Construction, 68, 21-31. https://doi.org/10.1016/j.autcon.2016.04.005
  17. Yoo, S.K., Park, H.S., Bae, S.C. (2019). A case study of domestic and oversea concrete 3D printing technology and applications, Journal of the Korea Concrete Institute, 31(1), 58-64 [in Korean].
  18. Zareiyan, B., Khoshnevis, B.(2017). Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete, Automation in Construction, 83, 212-221. https://doi.org/10.1016/j.autcon.2017.08.019