• Title/Summary/Keyword: Relative Humidity

Search Result 2,552, Processing Time 0.026 seconds

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.

Observation of Moisture Content in Wood at Non-Steady State

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.6
    • /
    • pp.599-604
    • /
    • 2009
  • For the search of unified law of moisture movement in wood, moisture distribution of Korean red pine at non-steady state was investigated. We assume that the equilibrium moisture content (EMC) in wood depends on only temperature and relative humidity, it can be control in temperature and humidity chamber. If temperature is constant and humidity or vapor pressure is changed with sin curve shape at adequate cycles, EMC in chamber can be changed as well with sin-curve shape. The setup condition of a non-steady state in humidity control chambers is a constant temperature at $20^{\circ}C$ and 15+10 sin ${\omega}t$ percent EMC. It can be found that the distribution of moisture in the specimen with varying relative humidity are illustrated various types. Moisture in wood is complicated and vibrates with the moisture sorption process. Considering a unified law of moisture movement in wood, it is considered that the most important fact is to search the method of precise diffusion & transfer coefficients.

  • PDF

AN APPLICATION OF PLASMA-POLYMERIZED YbPc$_2$ FILM: HUMIDITY SENSOR

  • Yamana, Masao;Kashiwazaki, Naoya
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.703-708
    • /
    • 1996
  • Humidity sensing cheracterisrics of vacuum deposited plasma poly merized $YbPc_2$ films were evaluated. In both films, humidity caused an increase of pro-ton conduction. Polymerised film shows a threshold fo humidity increase and its sensitivity diminishes more than $38^{\circ}C$ of relative humidity. Furthermore, for the polymerized film, two min. of resssponse time and 1 min. of recovery time are also obtained. The sensitivity between 10% and 85% of relative hum-idities is found to be one hundred higher than that of the vacuum deposited film.

  • PDF

Performance of Differential Field Effect Transistors with Porous Gate Metal for Humidity Sensors

  • Lee, Sung-Pil;Chowdhury, Shaestagir
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.434-439
    • /
    • 1999
  • Differential field effect transistors with double gate metal for integrated humidity sensors have been fabricated and the drain current drift characteristics to relative humidity have been investigated. The aspect ratio was 250/50 for both transistors to get the current difference between the sensing device and non-sensing one. The normalized drain current of the fabricated humidity sensitive field effect transistors increases from 0.12 to 0.3, as relative humidity increases from 30% to 90%.

  • PDF

Analysis on the Effect of Greenhouse Humidity Control by Counter-flow Ventilator in Winter (동절기 대향류형 환기장치의 온실 내 습도 조절 효과 분석)

  • Lee, Taeseok;Kang, Geumchoon;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.259-264
    • /
    • 2020
  • In this study, the humidity control effect of a counter-flow ventilator was analyzed in a greenhouse with high relative humidity at night in the winter season. A case of the counter-flow ventilator was 0.96 × 0.65× 0.82(W × D × H, m) and there were heat transfer element and two fans for air supply and exhaust in the counter-flow ventilator. Two counter-flow ventilators were used in this study and the setting humidity of the ventilators was 80%. The temperature and relative humidity at night(18:00-8:00) in the greenhouse were measured. In a greenhouse without a counter-flow ventilator, the average temperature and humidity was 14.9℃, 82.8%, respectively. When the counter-flow ventilator was operated, the corresponding averages were 15.1℃, 79.9%. The independent sample t test of monthly temperature and relative humidity showed no difference in temperature, and a significant difference in relative humidity with 1% of the significance level. Therefore, using the counter-flow ventilator helps to control relative humidity in greenhouse and increase yield.. And further research considering the pros and cons of using the counter-flow ventilator is needed.

Anion Distribution and Correlation Analysis by Fountain Type in Urban (도심지내 분수유형별 음이온 분포 및 상관성 분석)

  • Kim, Jeong-Ho;Park, Seung-Hwan;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1599-1610
    • /
    • 2013
  • In order to verify the healing effect in the variety of effects according to fountain type, anion which is the representatives factor of healing, as the center of case studies which in Gwanghwamun(Ground fountain), Cheonggyecheon(Waterfall) and Myeongdong(Formative fountain). According to fountain type, the anion distribution as follow, figures typically$ 15,721{\pm}419ea/cm^3$, Formative fountain $40,190{\pm}788ea/cm^3$, Waterfall $4.480{\pm}290ea/cm^3$ and ground fountain $2.492{\pm}180ea/cm^3$. It is usually exceed to the distribution in natural green, which is $1070{\sim}2100ea/cm^3$. The interrelation between air temperature, relative humidity, wind speed and relative humidity, and wind speed is that, the relative humidity is directly proportional to wind speed and inversely proportional to temperature. As the temperature goes up, the distribution of anion goes down. And as the wind speed and relative humidity goes up, the distribution of anion decrease sharply. The result of interrelation between fountain type and the anion distribution is that, the distance of water falling is directly proportional to the anion distribution in the formative fountain and inversely proportional in the ground fountain. And the distribution of anion is largest in formative fountain. The distribution of anion in ground fountain is lower than in formative fountain, but it is far more than in natural greenery. And as the distance from fountain increase, the distribution of anion goes down.

Drying Characteristics and Drying Model of Red Pepper (고추의 건조특성(乾燥特性)과 건조모델에 관(關)한 연구(硏究))

  • Cho, Y.J.;Koh, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.52-63
    • /
    • 1986
  • This study was performed to find out drying characteristics and develop drying model for the design of an efficient dryer or drying system of red peper. The basic model which describes drying phenomenon of red pepper was firstly established, and drying tests were conducted at 14-different drying conditions. In this test, the effects of drying air temperature and relative humidity on the rate of drying were undertaken. Finally, a new drying model based on these experimental results was developed to describe the drying characteristics of red pepper. The results from this study may be summarized as follows. 1. Drying constant of the basic model established from Lewis' experimental model and diffusion equation was theoretically deduced as a function of moisture content and inner-temperature of red pepper. 2. From the results of drying tests, drying air temperature was found to have the greatest effect on the rate of drying. However, the effect of temperature was small for the condition of high relative humidity, and for low temperature, the effect of relative humidity was found to be large even though the range of relative humidity was low. 3. Modified Henderson equation was found to be better than Chung equation as the EMC model for the estimation of the equilibrium moisture content of red Pepper. 4. Constant-rate drying period did not exist in the red pepper drying test. And falling-rate drying period was divided into three distinct phases. Drying rate was dependent on the moisture content, the inner-temperature of red pepper and the change of physical property due to drying. 5. Drying constant increased with decrease of free moisture content, but it decreased at the end of the drying period. Also, drying constant was dependent on the drying air temperature and relative humidity. 6. The new drying model developed in this study was found to be most suitable in describing the drying characteristics of red pepper. Therefore, it may be concluded that drying time could be accurately estimated by the new drying model.

  • PDF

Effects of aging on the phenolics content and antioxidant activities of rose flower (Rosa hybrida L.) extracts (숙성조건이 장미꽃 추출물의 페놀화합물(phenolics) 함량과 산화방지 활성에 미치는 영향)

  • Kim, Soyoung;Ko, Seung Hyun;Yoon, Hyungeun
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.714-716
    • /
    • 2017
  • Rose flower is widely used in the preparation of tea and contains a large variety of phytochemicals, including phenolics such as catechin, quercetin, and rutin. The effects of aging on rose (Rosa hybrida L.) flower extracts (RFE) were examined under conditions of varying temperature and relative humidity. The total phenolic content, antioxidative activity, and catechin levels were measured to evaluate the effects of temperature and relative humidity on the aging process. Performing the aging process at $30^{\circ}C$ under 60% or 90% relative humidity for 24 h significantly increased the total phenolic content and the antioxidant activities of RFE (p<0.05). Additionally, an aging process performed at $30^{\circ}C$ and 60% relative humidity for 24 h maximized the extraction rate of phenolics such as catechin and consequently led to increased antioxidative activity of RFE. In summary, this study indicates that the extraction rate of physiologically active phenolic compounds in rose flower can be increased by performing an aging process under optimized temperature and relative humidity conditions.

Study on the Storage of Chestnut (밤 저장(貯藏)에 관(關)한 연구(硏究))

  • Choi, Jong Uck;Lee, Joo Baek;Sohn, Tae Hwa
    • Current Research on Agriculture and Life Sciences
    • /
    • v.3
    • /
    • pp.99-104
    • /
    • 1985
  • This research was carried out study the effect of several relative humidities on the cracking of kernels of chestnuts. The moisture contents of total kernel increased at the higher humidity over 88% relative humidity. but the moisture contents of inner layer was decreased at low relative humidity below 76 %. The starch contents of kernel decreased, but free stgars increased during the total period of storage. The tannin contents increased during total of storage, and the tannin contents of out layer was higher than inner layer because of tannin transfer from astringent shell. As we considered the sprouting ratio, the rotting ratio and the cracking ratio, the optimal relative humidity of chestnut storage was proved 88% relative humidity.

  • PDF

Analysis on the Thermal Comfort Aspect of a Locally-Cooled Room in Warm and Humid Environments : PPD-Based Evaluation of Human Responses (중온 고습 환경조건에서 부분적으로 냉방되는 실내의 열쾌적성에 대한 분석 : 인체반응에 대한 PPD 기준의 평가)

  • Kim, Bong-Hun;Seo, Seung-Rok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.41-59
    • /
    • 1998
  • Thermal comfort aspect of a locally-cooled target space in warm and humid environments(typically in the rainy summer season) was studied in view of PPD index. First. theoretical analyses were conducted to examine the effect of the governing parameters(such as air temperature, relative humidity and air velocity, etc.) using a computer model. Secondly, experimental investigations were also performed in a climatic room designed to simulate corresponding thermal conditions of outdoor environments. During the tests, temporal variation of PPD was recorded as functions of climatic variables(outdoor and indoor temperatures, relative humidity and air velocity) for the given human factors(metabolic heat generation and clothing). From both theoretical and experimental investigations, air temperature and air velocity were found to be the most dominant parameters affecting PPD of the target space. Results were summarized as: 1. Relative humidity of the locally-cooled target space tends to approach that of outdoor's as the space is subjected to an ON-OFF mode of cooling, since moisture potential of the two rooms reaches an equalized state as a result of moisture diffusion. 2. It was recognized that changes in relative humidity did not show any significance in view of thermal comfort as was reported in the previous studies, while variations of both temperature and air velocity caused relatively large changes in the degree of thermal comfort. 3. In-door environment should be evaluated in terms of PPD instead of relative humidity commonly recognized as an important climatic variable particularly in warm and humid environments.

  • PDF