• 제목/요약/키워드: Relative Corrosion Current

검색결과 24건 처리시간 0.031초

Comparison with Polarization Characteristic of Polymers

  • Choi, Chil-Nam;Yabg, Hyo-Kyung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2001년도 가을 학술발표회 발표논문집
    • /
    • pp.188-190
    • /
    • 2001
  • We carried out to measure the variations of potential with current density polymers. The results were particularly examined to identify the influences on corrosion potential and corrosion rate of various factors including temperature and pH. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum passive current density were designated as the relative corrosion sensitivity($I_{r}I_{f}$). The mass transfer coefficient value (${\alpha}$) was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF

강재 수문의 부재 위치 및 설치 방향에 따른 상대 부식속도 평가 (Evaluation of Relative Corrosion Rate depending on Local Location and Installation of Structural Member in Steel Water Gate)

  • 하민균;정영수;박승훈;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.16-24
    • /
    • 2019
  • 강재로 제작된 구조물의 부식량은 설치형태에 따라 상이하게 나타나므로 그에 따른 효율적인 관리가 필요하다. 본 연구에서는 강재 수문의 설치형태와 높이에 따른 부식량과 부식속도를 평가하기 위하여 설치형태와 높이에 따라 모니터링 시험체와 부식환경측정 센서를 설치하여 대기노출실험을 실시하였다. 노출기간에 따라 모니터링 시험체를 회수하여 중량감소법으로 평가된 평균부식두께와 부식환경측정센서를 통하여 계측된 갈바닉 부식전류량과의 상관관계를 이용하여 강재 수문의 설치형태와 높이에 따른 향후 부식량을 예측하였다. 본 연구 결과 수문의 가로보 수평부재는 상대적으로 가로보 스킨플레이트 부재 등의 부식손상량과 비교하면 매우 크게 발생하고 있으며, 수문 부재의 국부적 환경에 따라 부식속도가 크게 영향을 받을 수 있음을 확인할 수 있었다. 따라서 강재 수문의 국부적 부식환경 차이에 따른 부식손상 수준을 고려한 수문의 적절한 유지관리가 필요할 것으로 판단된다.

Comprehensive Empirical Equation for Assessing Atmospheric Corrosion Progression of Steel Considering Environmental Parameters

  • Sil, Arjun;Kumar, Vanapalli Naveen
    • Corrosion Science and Technology
    • /
    • 제19권4호
    • /
    • pp.174-188
    • /
    • 2020
  • Atmospheric corrosion is a natural surface degradation process of metal due to changes in environmental parameters in the surrounding atmosphere. It is very sensitive to environmental parameters such as temperature, relative humidity, sulphur dioxide, and chloride, making it a major global economic challenge. Existing forecasting empirical corrosion models including the ISO standard are based on statistical analysis of experimental studies without considering the behavior of atmospheric parameters. The present study proposes a reliable global empirical model for estimating short and long-term atmospheric corrosion rates based on environmental parameters and corrosion mechanisms obtained from a parametric study. Repercussion of atmospheric corrosion rate due to individual and combined influences of environmental parameters specifies their importance in the estimation. New global empirical coefficients obtained for environmental parameters are statistically established (R2 =0.998) with 95% confidence limit. They are validated using experimental datasets of existing studies observed at 88 different continental locations. The current proposed model can predict atmospheric corrosion by means of corrosion formation mechanisms influenced by combined effects of environmental parameters, further abating applicability limitations of location and time.

Involvement of Organic Acid During Corrosion of Iron Coupon by Desulfovibrio desulfuricans

  • Park, Kyung-Ran;Lee, Hyun-Jin;Lee, Hong-Keum;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.937-941
    • /
    • 2003
  • Microbiologically influenced corrosion (MIC) is an electrochemical process where the participation of microorganisms initiates, facilitates, or accelerates the corrosion reaction. Sulfate-reducing bacteria (SRB) reduce sulfate to sulfide and are known to be the most destructive microorganisms in anaerobic MIC. Accordingly, the current study attempted to elucidate the mechanisms involved and the relative importance of the corrosive products in SRB-induced corrosion. The measured rate of anaerobic corrosion of iron coupons by Desulfovibrio desulfuricans was $89.9{\;}\mu\textrm{g}{\;}\textrm{m}^{-2}{\;}d^{-1}$. Direct contact between the cells and the iron coupon did not seem to be necessary for corrosion to occur, since the corrosion rate was similar ($100.8{\;}\mu\textrm{g}{\;}\textrm{m}^{-2}{\;}d^{-1}$) when the coupon was enclosed in a dialysis bag. The participation of sulfide in the corrosion process was only marginal, as the specific corrosion rate was 2.5 times higher in a sulfate-free pyruvate medium than in an $H_2S-producing$ lactate medium. Acetate (18.8-22.1 mM), the end-product of pyruvate and lactate metabolism, was identified in the culture medium and thus presumed to play a major role in the corrosion process involving Desulfovibrio desulfuricans.

수소생산을 위한 Sulfide-Iodine 공정장치용 초내식 탄탈코팅층 전착특성 (Electrodeposition Characteristics of Corrosion Resistant Tantalum Coating Layer for Hydrogen Production Sulfide-Iodine Process)

  • 이영준;김대영;한문희;강경수;배기광;이종현
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.573-580
    • /
    • 2012
  • Corrosion resistance and basic physical properties of solid tantalum are not comparable to most of the structural metallic materials. The relative high cost and melting temperature of tantalum are obstacles to be widely applied to general engineering processes. Electrodeposition in molten salt enables compact and uniform tantalum coating. In this study, Ta was coated onto base metal (SUS316L) with different current densities (0.5, 5, $20mA/cm^2$) by using MSE (Molten Salt Electrodeposition). In this study, it showed that deposition efficiency and microstructure of Ta coating layer were strongly depended on current density. In the case of the current density of $5mA/cm^2$, densest microstructure was obtained. The current density above $5mA/cm^2$ caused non-uniform microstructure due to rapid deposition rate. Dense microstructure and intact coating layer contributed to significant corrosion resistance enhancement.

Factors Influencing Edge Dendritic Plating of Steel Sheet in the Electro-Galvanizing Line

  • Du-Hwan Jo;Moonjae Kwon;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.215-220
    • /
    • 2024
  • Recently, the demand for Zn-Ni electrogalvanized steel sheets for home appliances and automobiles is increasing. Products should have a thick plating (30 to 40 g/m2) on both side with a thin thickness (≤ 0.8 mm) and the highest surface quality. By a high current density operation, current is concentrated in the edge part of the steel sheet, resulting in large surface dent defects due to dendritic plating. This can lead to a low productivity due to low line speed operation. To solve this problem, this study aimed to identify factors influencing dendritic plating. A cylindrical electroplating device was manufactured. Effects of cut edge shape and thickness of steel plate, current density, temperature, flow rate, electrolyte concentration, and pH on dendrite generation of Zn-Ni electroplating were examined. To investigate effect of edge shape of the steel sheet, the steel sheet was manufactured using three processing methods: shearing, polishing after shearing, and laser. Relative effects thickness and cut edge processing methods of the steel plate, current density, temperature, flow rate, electrolyte concentration, and pH of plating solution on dendrite plating were investigated. To prevent dendrite plating, an edge mask was manufactured and its application effect was investigated.

Corrosion Characteristics with Polarization Curve of Polymers

  • Park, Chil-Nam;Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_4호
    • /
    • pp.181-187
    • /
    • 2001
  • This study was carried out to measure the variations of potential and current density with polymers. The results were particularly examined to identify the influences on potential and rate of various factors including temperature and pH. The Tafel slope for anodic dissolution was determined by the polarization effect depending on these conditions. The optimum conditions were established for each case. The second anodic current density peak and maximum current density were designated as the relative polarization sensitivity$(I_r/I_f)$. The mass transfer coefficient value$(\alpha)$ was determined with the Tafel slope for anodic dissolution based on the polarization effect with optimum conditions.

  • PDF

원자력발전소 증기발생기 전열관의 결함발생 예방을 위한 전자기 비파괴 검사방법 개발 (Development of an Electromagnetic Nondestructive Testing Method for the Prevention of Defects in Steam Generator Tubes at Nuclear Power Plant)

  • 신영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.83-85
    • /
    • 1996
  • Major cause of defects in steam generator tubes at nuclear power plant is the accumulation of magnetite and other byproducts of corrosion in the crevice gap between support plates and tubes. Since damaged tubes result in contamination of the secondary coolant by the radioactive primary coolant, they represent a safety hazard. Early detection of magnetite buildup is, therefore, imperative in order to take remedial measures such as chemical flushing. Although the eddy current testing is being used for the inspection of steam generator tubes, the interpretation of resulting signals is generally a difficult task. This paper uses the phase of sensor coil emf as the test signal to find a way of easier signal interpretation. Numerical study using FEM shows that the shape of resulting signal is good for identifying the relative position of the probe to the support plate, and for discreminating the different shapes and degrees of magnetite buildup in the crevice gap region.

  • PDF

Demonstration of EPRI CHECWORKS Code to Predict FAC Wear of Secondary System Pipings of a Nuclear Power Plant

  • Lee, Sung-Ho;Seong Jegarl;Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.375-384
    • /
    • 1999
  • The credibility of CHECWORKS FAC model analysis was evaluated for plant application in a model plant chosen for demonstration. The operation condition at each pipe component was defined before the wear rate analysis by plant data base, water chemistry analysis, and network flow analysis. The predicted wear was compared with the measured wear for 57 sample components selected from 43 susceptible line groups analysed. The inspected 57 locations represent components of highest predicted wear in each line group. Both absolute value and relative ranking comparisons indicated reasonable correlations between the predicted and the measured values. Four components showed much higher measured wear rates than the predicted ones in the feed water train from main feed water pump discharge to steam generator, probably due to high hydrazine concentration operation the effect of which had not been incorporated into the CHECWORKS model. The measured wear was higher than the predicted one consistently for components with least susceptibility to FAC. It is believed that the conservatism maintained during UT data analysis dominated the measurement accuracy. A great deal of enhancement is anticipated over the current plant pipe management program when a comprehensive plant pipe management program is implemented based on the model analysis.

  • PDF

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.