Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.4.174

Comprehensive Empirical Equation for Assessing Atmospheric Corrosion Progression of Steel Considering Environmental Parameters  

Sil, Arjun (Dept of Civil Engineering, NIT Silchar)
Kumar, Vanapalli Naveen (Dept of Civil Engineering, NIT Silchar)
Publication Information
Corrosion Science and Technology / v.19, no.4, 2020 , pp. 174-188 More about this Journal
Abstract
Atmospheric corrosion is a natural surface degradation process of metal due to changes in environmental parameters in the surrounding atmosphere. It is very sensitive to environmental parameters such as temperature, relative humidity, sulphur dioxide, and chloride, making it a major global economic challenge. Existing forecasting empirical corrosion models including the ISO standard are based on statistical analysis of experimental studies without considering the behavior of atmospheric parameters. The present study proposes a reliable global empirical model for estimating short and long-term atmospheric corrosion rates based on environmental parameters and corrosion mechanisms obtained from a parametric study. Repercussion of atmospheric corrosion rate due to individual and combined influences of environmental parameters specifies their importance in the estimation. New global empirical coefficients obtained for environmental parameters are statistically established (R2 =0.998) with 95% confidence limit. They are validated using experimental datasets of existing studies observed at 88 different continental locations. The current proposed model can predict atmospheric corrosion by means of corrosion formation mechanisms influenced by combined effects of environmental parameters, further abating applicability limitations of location and time.
Keywords
Atmospheric corrosion; Empirical model; Corrosion rate; Prediction; Environmental parameters;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Chen, L. Hao, J. Dong, and W. Ke, Corros. Sci., 83, 155 (2014). https://doi.org/10.1016/j.corsci.2014.02.010   DOI
2 M. G. R. Mahlobo, K. Premlall, and P. A. Olubambi, IOP Conf. Ser. Mater. Sci. Eng., 272, 012031 (2017). https://doi.org/10.1088/1757-899X/272/1/012031   DOI
3 C. Martinez, F. Briones, M. Villarroel, and R. Vera, Materials, 11, 591 (2018). https://doi.org/10.3390/ma11040591   DOI
4 S. Chattefuee and A. S. Hadi, Regression Analysis by Example, 4th ed., John Wiley & Sons, NJ (2006). https://doi.org/10.1002/0470055464
5 G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, Springer, NY (2013). https://doi.org/10.1007/978-1-4614-7138-7
6 B. M. Fernandez-Perez, J. Morales, H. Cristina Vasconcelos, R. M. Souto, S. Gonzalez, V. Cano, and J. J. Santana, Eur. J. Sci. Theol., 11, 241 (2015).
7 G. F. Hays, Now is the time, Adv. Mater. Res., 95, 1 (2010). https://www.scientific.net/AMR.95.-2
8 N. G. Thomson, Y. Mark, and D. J. Daniel, Corrosion Costs and Maintenance Strategies - A Civil / Industrial and Government Partnership, Corr Defense (2005). https://www.yumpu.com/en/document/read/37351574/corrosion-costs-and-maintenance-strategies-a-civil-corrdefense
9 S. Oesch, Corros. Sci., 38, 1357 (1996). https://doi.org/10.1016/0010-938X(96)00025-X   DOI
10 E. Kusmierek and E. Chrzescijanska, Data Br., 3, 149 (2015). https://doi.org/10.1016/j.dib.2015.02.017   DOI
11 I. S. Cole, T. H. Muster, N. S. Azmat, M. S. Venkatraman, and A. Cook, Electrochim. Acta, 56, 1856 (2011). https://doi.org/10.1016/j.electacta.2010.10.025   DOI
12 D. Thierry, D. Persson, G. Luckeneder, and K. H. Stellnberger, Corros. Sci., 148, 338 (2019). https://doi.org/10.1016/j.corsci.2018.12.033   DOI
13 M. Morcillo, S. Feliu, J. Simancas, Br. Corros. J., 28, 50 (2013). https://doi.org/10.1179/000705993798268278   DOI
14 Y. C. Sica, E. D. Kenny, K. F. Portella, and D. F. Campos Filho, J. Braz. Chem. Soc., 18, 153 (2007). https://doi.org/10.1590/S0103-50532007000100017   DOI
15 P. V. Strekalov, W. D. Wo, and Y. N. Mikhailovskii, kinetics of atmospheric corrosion of steel and zinc in a tropical climate: results of five-year tests, Prot. Met. (English Transl. Zaschita Met. (1983).
16 C. Martinez, F. Briones, M. Villarroel, and R. Vera, Materials, 11, 591 (2018). https://doi.org/10.3390/ma11040591   DOI
17 E. A. Tice, J. Air Pollut. Control Assoc., 12, 553 (1962). https://doi.org/10.1080/00022470.1962.10468127   DOI
18 R. A. Legault and A. G. Preban, Corrosion, 31, 117 (1975). https://doi.org/10.5006/0010-9312-31.4.117   DOI
19 H. Townsend and J. Zoccola, Eight-Year Atmospheric Corrosion Performance of Weathering Steel in Industrial, Rural, and Marine Environments, Atmos. Corros. Met. (2009). https://doi.org/10.1520/stp33185s
20 Y. Ma, Y. Li, and F. Wang, Corros. Sci., 52, 1796 (2010). https://doi.org/10.1016/j.corsci.2010.01.022   DOI
21 M. Stratmann, K. Bohnenkamp, and T. Ramchandran, Corros. Sci., 27, 905 (1987). https://doi.org/10.1016/0010-938X(87)90058-8   DOI
22 S. Syed, Mater. Corros., 64, 633 (2013). https://doi.org/10.1002/maco.201206708   DOI
23 S. Feliu, M. Morcillo, and S. Feliu, Corros. Sci., 34, 403 (1993). https://doi.org/10.1016/0010-938X(93)90112-T   DOI
24 M. Stratmann and H. Streckel, Corros. Sci., 30, 681 (1990). https://doi.org/10.1016/0010-938X(90)90032-Z   DOI
25 S. Feliu, M. Morcillo, and S. Feliu, Corros. Sci., 34, 415 (1993). https://doi.org/10.1016/0010-938X(93)90113-U   DOI
26 A. R. Mendoza and F. Corvo, Corros. Sci., 41, 75 (1999). https://doi.org/10.1016/S0010-938X(98)00081-X   DOI
27 ISO 9223:2012, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation, ISO FDIS (2012). https://www.iso.org/standard/53499.html
28 ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM International (2010). https://doi.org/10.1520/ds71-eb
29 L. Lazzari, Corrosion in Water, Soil and Air, p. 81, Eng. Tools Corros., (2017). https://doi.org/10.1016/b978-0-08-102424-9.00005-7
30 M. Morcillo, Atmospheric Corrosion in Ibero-America: The MICAT Project, in: Atmos. Corros., (2009). https://doi.org/10.1520/stp14924s
31 R. W. Revie, Uhlig's Corrosion Handbook, 3rd, John Wiley & Sons, Hoboken, New Jersey (2011). https://doi.org/10.1002/9780470872864
32 V. Kucera, A. A. Mikhailov, J. Henriksen, K. Kreislova, T. Yates, B. Stockle, and M. Schreiner, Water. Air. Soil Pollut., 130, 1457 (2001). https://doi.org/10.1023/A:1013965030909   DOI
33 V. Kucera, J. Tidblad, K. Kreislova, D. Knotkova, M. Faller, D. Reiss, R. Snethlage, T. Yates, J. Henriksen, M. Schreiner, M. Melcher, M. Ferm, R. A. Lefevre, and J. Kobus, Acid Rain - Depos. to Recovery, pp. 249-258, Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5885-1_27
34 D. E. Klinesmith, R. H. McCuen, and P. Albrecht, J. Mater. Civil Eng., 19, 121 (2007). https://doi.org/10.1061/(asce)0899-1561(2007)19:2(121)   DOI
35 H. E. Townsend, STP 1421-EB, Outdoor Atmospheric Corrosion, ASTM International, West Conshohochen, PA (2002). https://doi.org/10.1520/stp1421-eb
36 Y. Cai, Y. Zhao, X. Ma, K. Zhou, and Y. Chen, Corros. Sci., 137, 163 (2018). https://doi.org/10.1016/j.corsci.2018.03.042   DOI
37 H. Simillion, O. Dolgikh, H. Terryn, and J. Deconinck, Corros. Rev., 32, 73 (2014). https://doi.org/10.1515/corrrev-2014-0023   DOI
38 N. LeBozec, M. Jonsson, and D. Thierry, Corrosion, 60, 356 (2004). https://doi.org/10.5006/1.3287743   DOI
39 X. Wang, X. Li, and X. Tian, Int. J. Electrochem. Sci., 10, 8361 (2015).