DOI QR코드

DOI QR Code

Comprehensive Empirical Equation for Assessing Atmospheric Corrosion Progression of Steel Considering Environmental Parameters

  • Received : 2020.04.08
  • Accepted : 2020.06.11
  • Published : 2020.08.31

Abstract

Atmospheric corrosion is a natural surface degradation process of metal due to changes in environmental parameters in the surrounding atmosphere. It is very sensitive to environmental parameters such as temperature, relative humidity, sulphur dioxide, and chloride, making it a major global economic challenge. Existing forecasting empirical corrosion models including the ISO standard are based on statistical analysis of experimental studies without considering the behavior of atmospheric parameters. The present study proposes a reliable global empirical model for estimating short and long-term atmospheric corrosion rates based on environmental parameters and corrosion mechanisms obtained from a parametric study. Repercussion of atmospheric corrosion rate due to individual and combined influences of environmental parameters specifies their importance in the estimation. New global empirical coefficients obtained for environmental parameters are statistically established (R2 =0.998) with 95% confidence limit. They are validated using experimental datasets of existing studies observed at 88 different continental locations. The current proposed model can predict atmospheric corrosion by means of corrosion formation mechanisms influenced by combined effects of environmental parameters, further abating applicability limitations of location and time.

Keywords

References

  1. G. F. Hays, Now is the time, Adv. Mater. Res., 95, 1 (2010). https://www.scientific.net/AMR.95.-2
  2. N. G. Thomson, Y. Mark, and D. J. Daniel, Corrosion Costs and Maintenance Strategies - A Civil / Industrial and Government Partnership, Corr Defense (2005). https://www.yumpu.com/en/document/read/37351574/corrosion-costs-and-maintenance-strategies-a-civil-corrdefense
  3. S. Oesch, Corros. Sci., 38, 1357 (1996). https://doi.org/10.1016/0010-938X(96)00025-X
  4. E. Kusmierek and E. Chrzescijanska, Data Br., 3, 149 (2015). https://doi.org/10.1016/j.dib.2015.02.017
  5. I. S. Cole, T. H. Muster, N. S. Azmat, M. S. Venkatraman, and A. Cook, Electrochim. Acta, 56, 1856 (2011). https://doi.org/10.1016/j.electacta.2010.10.025
  6. D. Thierry, D. Persson, G. Luckeneder, and K. H. Stellnberger, Corros. Sci., 148, 338 (2019). https://doi.org/10.1016/j.corsci.2018.12.033
  7. M. Morcillo, S. Feliu, J. Simancas, Br. Corros. J., 28, 50 (2013). https://doi.org/10.1179/000705993798268278
  8. Y. C. Sica, E. D. Kenny, K. F. Portella, and D. F. Campos Filho, J. Braz. Chem. Soc., 18, 153 (2007). https://doi.org/10.1590/S0103-50532007000100017
  9. P. V. Strekalov, W. D. Wo, and Y. N. Mikhailovskii, kinetics of atmospheric corrosion of steel and zinc in a tropical climate: results of five-year tests, Prot. Met. (English Transl. Zaschita Met. (1983).
  10. C. Martinez, F. Briones, M. Villarroel, and R. Vera, Materials, 11, 591 (2018). https://doi.org/10.3390/ma11040591
  11. R. A. Legault and A. G. Preban, Corrosion, 31, 117 (1975). https://doi.org/10.5006/0010-9312-31.4.117
  12. H. Townsend and J. Zoccola, Eight-Year Atmospheric Corrosion Performance of Weathering Steel in Industrial, Rural, and Marine Environments, Atmos. Corros. Met. (2009). https://doi.org/10.1520/stp33185s
  13. Y. Ma, Y. Li, and F. Wang, Corros. Sci., 52, 1796 (2010). https://doi.org/10.1016/j.corsci.2010.01.022
  14. E. A. Tice, J. Air Pollut. Control Assoc., 12, 553 (1962). https://doi.org/10.1080/00022470.1962.10468127
  15. M. Stratmann, K. Bohnenkamp, and T. Ramchandran, Corros. Sci., 27, 905 (1987). https://doi.org/10.1016/0010-938X(87)90058-8
  16. S. Syed, Mater. Corros., 64, 633 (2013). https://doi.org/10.1002/maco.201206708
  17. S. Feliu, M. Morcillo, and S. Feliu, Corros. Sci., 34, 403 (1993). https://doi.org/10.1016/0010-938X(93)90112-T
  18. M. Stratmann and H. Streckel, Corros. Sci., 30, 681 (1990). https://doi.org/10.1016/0010-938X(90)90032-Z
  19. S. Feliu, M. Morcillo, and S. Feliu, Corros. Sci., 34, 415 (1993). https://doi.org/10.1016/0010-938X(93)90113-U
  20. A. R. Mendoza and F. Corvo, Corros. Sci., 41, 75 (1999). https://doi.org/10.1016/S0010-938X(98)00081-X
  21. ISO 9223:2012, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation, ISO FDIS (2012). https://www.iso.org/standard/53499.html
  22. ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM International (2010). https://doi.org/10.1520/ds71-eb
  23. M. Morcillo, Atmospheric Corrosion in Ibero-America: The MICAT Project, in: Atmos. Corros., (2009). https://doi.org/10.1520/stp14924s
  24. L. Lazzari, Corrosion in Water, Soil and Air, p. 81, Eng. Tools Corros., (2017). https://doi.org/10.1016/b978-0-08-102424-9.00005-7
  25. R. W. Revie, Uhlig's Corrosion Handbook, 3rd, John Wiley & Sons, Hoboken, New Jersey (2011). https://doi.org/10.1002/9780470872864
  26. V. Kucera, A. A. Mikhailov, J. Henriksen, K. Kreislova, T. Yates, B. Stockle, and M. Schreiner, Water. Air. Soil Pollut., 130, 1457 (2001). https://doi.org/10.1023/A:1013965030909
  27. V. Kucera, J. Tidblad, K. Kreislova, D. Knotkova, M. Faller, D. Reiss, R. Snethlage, T. Yates, J. Henriksen, M. Schreiner, M. Melcher, M. Ferm, R. A. Lefevre, and J. Kobus, Acid Rain - Depos. to Recovery, pp. 249-258, Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5885-1_27
  28. D. E. Klinesmith, R. H. McCuen, and P. Albrecht, J. Mater. Civil Eng., 19, 121 (2007). https://doi.org/10.1061/(asce)0899-1561(2007)19:2(121)
  29. H. E. Townsend, STP 1421-EB, Outdoor Atmospheric Corrosion, ASTM International, West Conshohochen, PA (2002). https://doi.org/10.1520/stp1421-eb
  30. Y. Cai, Y. Zhao, X. Ma, K. Zhou, and Y. Chen, Corros. Sci., 137, 163 (2018). https://doi.org/10.1016/j.corsci.2018.03.042
  31. H. Simillion, O. Dolgikh, H. Terryn, and J. Deconinck, Corros. Rev., 32, 73 (2014). https://doi.org/10.1515/corrrev-2014-0023
  32. N. LeBozec, M. Jonsson, and D. Thierry, Corrosion, 60, 356 (2004). https://doi.org/10.5006/1.3287743
  33. X. Wang, X. Li, and X. Tian, Int. J. Electrochem. Sci., 10, 8361 (2015).
  34. W. Chen, L. Hao, J. Dong, and W. Ke, Corros. Sci., 83, 155 (2014). https://doi.org/10.1016/j.corsci.2014.02.010
  35. M. G. R. Mahlobo, K. Premlall, and P. A. Olubambi, IOP Conf. Ser. Mater. Sci. Eng., 272, 012031 (2017). https://doi.org/10.1088/1757-899X/272/1/012031
  36. C. Martinez, F. Briones, M. Villarroel, and R. Vera, Materials, 11, 591 (2018). https://doi.org/10.3390/ma11040591
  37. B. M. Fernandez-Perez, J. Morales, H. Cristina Vasconcelos, R. M. Souto, S. Gonzalez, V. Cano, and J. J. Santana, Eur. J. Sci. Theol., 11, 241 (2015).
  38. S. Chattefuee and A. S. Hadi, Regression Analysis by Example, 4th ed., John Wiley & Sons, NJ (2006). https://doi.org/10.1002/0470055464
  39. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, Springer, NY (2013). https://doi.org/10.1007/978-1-4614-7138-7