• Title/Summary/Keyword: Reinforcing bars

Search Result 573, Processing Time 0.025 seconds

A Study on the Reinforcing Bar Corrosion Caused by Permeation of Chloride Ion Under Sustained Load (지속 하중하에서 철근콘크리트 부재의 염화물 침투특성에 따른 철근부식에 관한 연구)

  • 최일호;김형래;윤상천;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.779-782
    • /
    • 1999
  • This study was carried out to estimate the effects of the loading conditions on the corrosion of reinforcing bars and permeation of chloride ion. The permeation of chlorides depends not only on the transfer properties in concrete but also on the load applied in the case of reinforced concrete structures. Recent studies reported that the loading conditions affected the corrosion rate of the reinforcing bars under existence of an external current supply. But it was not reported that loading conditions affected corrosion of reinforcing bar caused by the characteristics of permeation and the process of cracking. In this experiment, it was shown that the corrosion of reinforcing bars and the characteristics of permeating were greatly affected by the loading conditions.

  • PDF

Applicability of Cu-Al-Mn shape memory alloy bars to retrofitting of historical masonry constructions

  • Shrestha, Kshitij C.;Araki, Yoshikazu;Nagae, Takuya;Omori, Toshihiro;Sutou, Yuji;Kainuma, Ryosuke;Ishida, Kiyohito
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.233-256
    • /
    • 2011
  • This paper investigates the applicability of newly developed Cu-Al-Mn shape memory alloy (SMA) bars to retrofitting of historical masonry constructions by performing quasi-static tests of half-scale brick walls subjected to cyclic out-of-plane flexure. Problems associated with conventional steel reinforcing bars lie in pinching, or degradation of stiffness and strength under cyclic loading, and in their inability to restrain residual deformations in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu-Al-Mn SMA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Three types of brick wall specimens, unreinforced, steel reinforced, and SMA reinforced specimens are prepared. The specimens are subjected to quasi-static cyclic loading up to rotation angle enough to cause yielding of reinforcing bars. Corresponding nonlinear finite element models are developed to simulate the experimental observations. It was found from the experimental and numerical results that both the steel reinforced and SMA reinforced specimens showed substantial increment in strength and ductility as compared to the unreinforced specimen. The steel reinforced specimen showed pinching and significant residual elongation in reinforcing bars while the SMA reinforced specimen did not. Both the experimental and numerical observations demonstrate the superiority of Cu-Al-Mn SMA bars to conventional steel reinforcing bars in retrofitting historical masonry constructions.

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bar (GFRP 보강근의 이음성능)

  • Lee Chang-Ho;Choi Dong-Uk;Song Ki-Mo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.120-123
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength at least equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length: 10, 20, 30 $d_b$ for the deformed steel bars and 20, 30, 40 $d_b$ for the GFRP bars. Two different types of GFRP bars were tested: (1) one with spiral-type deformation and (2) plain round bars. Elastic modulus was about 1/5 of the steel bars while the tensile strength was about 690 MPa for the GFRP bars. Nominal diameter of the GFRP bars and steel bars was 12.7 and 13 mm, respectively. Normal strength concrete (28-day $f_{cu}$ = 30 MPa) was used. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was developed using the lap splice length of 20 and 30 $f_{cu}$. Only $87\%$ of the nominal yield strength was reached with the lap splice length of 10 $d_b$. For the spiral-type deformed GFRP bars with $40-d_b$ lap splice length, 440 MPa in tension was determined. The maximum tensile strength developed of the GFRP bars with smaller lap splice lengths decreased. The plain GFRP bar was not effective in developing the tensile strength even with $40-d_b$ lap splice length. Development of the cracks on beam surface was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Effect of Composite Re-bars Embedded in Concrete on Surface Electrical Resistivity of Concrete (콘크리트내 섬유복합체 보강근이 표면저항치에 미치는 영향)

  • Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.212-218
    • /
    • 2011
  • The effect of composite reinforcing bars on surface electrical resistivity of concrete was investigated through experimental program. The resistivity was measured by Wenner method using an equipment with 4 probe. Ordinary steel, GFRP, and CFRP reinforcing bars produced domestically were used and a specimen with no reinforcement was tested for the comparison. This investigation is motivated from the fact that measured value of resistivity of concrete is significantly affected by details of steel reinforcements, such as location, depth and direction of the internal steel reinforcement. These results could be valuable data for evaluation of corrosion degree of concrete structures reinforced or strengthened by the composite reinforcing bars.

Evaluation of Rib Geometries of Reinforcing Bars Available in Korea, Japan and USA (국내외 이형철근의 마디 형태 및 부착강도 비교)

  • Soe, Dong-Min;Kim, Ki-Seong;Bong, Won-Young;Yang, Seung-Yul;Hong, Gi-Suop;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.278-281
    • /
    • 2006
  • The aims of this study are to investigate rib geometries of reinforcing bars commercially available in Korea, Japan and USA, and evaluate bond performance using beam-end test specimens. Measurement of rib geometries of the bars include nominal area, average distance of rib, height of rib and an angle of rib perpendicular to bar axis. The result of this study show that rib height of Korean reinforcement bars are much less than those of Japan and USA resulting in the lowest value of relative rib area. Average bond strength of Korean D25 deformed bars is known as 9 % less than that of bars produced in USA. Bond strength depends primarily on the relative rib area. Bond strength of the high relative rib area bars produced in USA show 18% higher than that of bars produced in Korea.

  • PDF

Corrosion Evaluation of Epoxy-Coated Bars by Electrochemical Impedance Spectroscopy

  • Choi, Oan-Chul;Park, Young-Su;Ryu, Hyung-Yun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2008
  • Southern exposure test specimens were used to evaluate corrosion performance of epoxy-coated reinforcing bars in chloride contaminated concrete by electrochemical impedance spectroscopy method. The test specimens with conventional bars, epoxy-coated bars and corrosion inhibitors were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. The polarization resistance obtained from the Nyquist plot was the key parameter to characterize the degree of reinforcement corrosion. The impedance spectra of specimens with epoxy-coated bars are mainly governed by the arc of the interfacial film and the resistance against the charge transfer through the coating is an order of magnitude higher than that of the reference steel bars. Test results show good performance of epoxy-coated bars, although the coatings had holes simulating partial damage, and the effectiveness of corrosion-inhibiting additives. The corrosion rate obtained from the impedance spectroscopy method is equivalent to those determined by the linear polarization method for estimating the rate of corrosion of reinforcing steel in concrete structures.

Heated temperature and Range of the Oxy-acetylene Cutting Reinforcing Bar by Simulation and Experiment (시뮬레이션과 실험에 의한 산소절단기 절단시 철근의 수열온도 분포)

  • Kim, Bong-Joo;Kim, Jae-Hun;Cho, Byoung-Hoo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • The object of this experimental and simulation study is to find out heated temperature and range from the Oxy-acetylene cutting point of reinforcing bars (D10, D13, D16, D19, D22, D25 for each cases of SD3O and SD40) in room temperature ($20{\sim}22^{\circ}C$). This cutting is under the condition that a skilled worker cut one bar per a time. The results are these. 1. The temperature of the point 1 of reinforcing bars cut with Oxy-acetylene cutter is over 700$^{\circ}C$ under 1000$^{\circ}C$, but the temperature of the point 2 of reinforcing bars cut with Oxy-acetylene cutter is under 200$^{\circ}C$ 2. The temperature of the point that is apart 2cm from Oxy-acetylene cutting point is not over 200$^{\circ}C$, so reinforcing bars has not transform to be brittle. The results of simulation for temperatures of the each point apart from Oxy-acetylene cutting point is similar to upper experimental results.

Lap Splice Performance of Reinforcing Bars in High Performance Fiber Reinforced Cementitious Composite under Repeated Loading (반복하중 하에서 고인성 시멘트 복합체 내 철근의 겹침이음성능)

  • Jeon, Esther;Kim, Sun-Woo;Yang, Ii-Seung;Han, Byung-Chan;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.181-184
    • /
    • 2005
  • Experimental results on lap splice performance of high performance fiber reinforced cementitious composite(HPFRCC) with fiber types under repeated loading are reported. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The development length($l_d$) was calculated according to the relevant ACI code requirements for reinforcing bars in concrete. The current experimental results demonstrated clearly that the use of fibers in cementitious matrixes increases significantly the splice strength of reinforcing bars in tension. Also, the presence of fibers increased the number of cracks formed around the spliced bars.

  • PDF

Effect of Maximum Size of Coarse Aggregate on Passing Performance of Concrete between Reinforcing Bars (굵은골재의 최대치수가 콘크리트의 간극통과성에 미치는 영향)

  • Baik Dae-Hyun;Yoon Seob;Kim Jung-Bin;Lee Seong-Yeun;Yoon Ki-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • This study investigated filling performance of concrete which can pass between reinforcing bars and be fully filled, and examined fundamental properties of concrete which is before or after hardened state, in response to maximum size of coarse aggregate. This study was also originally intended to find out one of the method that can improve concrete quality, using crushed coarse aggregate. Test showed that passing ratio of concrete decreased as aggregate site increased and as space between reinforcing bars decreased. In addition concrete using bigger size of coarse aggregate exhibited slightly higher compressive strength and showed lower length change ratio of drying shrinkage.

  • PDF

Lap Splice Strength of Reinforcing Bars on the Relitive Rib Area (상대마디면적에 따른 이형철근의 겹침이음 강도)

  • Park, Sung-Gyu;Hong, Geon-Ho;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.307-310
    • /
    • 2005
  • The effects of deformation properties on the bond of steel reinforcing bars to concrete are experimentally studies to expect the lap splice strength. Based on the previous research about relative rib area, lap splice strength between reinforcing bars and concrete can be improved by the control of rib height and spacing. This paper describes the testing and analysis of 15 beam-spliced specimens containing D25, D22, D19 with relative rib areas ranging from 0.066 to 0.162. The tests are analyzed to determine the effect of relative rib area(Rr) on the increase in bond strength. The tests also provide a preliminary indication of the effect of high relative rib area on the splice strength of uncoated bars.

  • PDF