• Title/Summary/Keyword: Reinforced Resin

Search Result 515, Processing Time 0.026 seconds

Fiber-reinforced composite resin bridges: an alternative method to treat root-fractured teeth

  • Heo, Gun;Lee, Eun-Hye;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.8.1-8.9
    • /
    • 2020
  • The replacement of missing teeth, especially in the anterior region, is an essential part of dental practice. Fiber-reinforced composite resin bridges are a conservative alternative to conventional fixed dental prostheses or implants. It is a minimally invasive, reversible technique that can be completed in a single visit. The two cases presented herein exemplify the treatment of root-fractured anterior teeth with a natural pontic immediately after extraction.

Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates (평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

Novel Phenol Resin Carbonizing Method for Carbon Interlayer Coating between Reinforcing Fiber and Matrix in Fiber Reinforced Ceramic Composite (페놀수지 탄화 코팅법을 이용한 섬유강화 복합재료 계면 형성에 관한 연구)

  • Kim, Se-Young;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.301-305
    • /
    • 2009
  • The novel carbon coating process for interlayer of fiber reinforced ceramic composites between fiber and matrix was performed by carbonizing phenolic resin solution that coated on fiber surface in $N_2$ atmosphere at $600^{\circ}C$ to improve the strength and fracture toughness of CMC(ceramic matrix composite). 160 nm carbon layer was coated on fiber surface with 5 vol% of phenolic resin solution. Since the process temperature ($600^{\circ}C$) is lower than chemical vapor deposition($900{\sim}1000^{\circ}C$), the strength and toughness could be preserved. Furthermore the coating thickness uniformity was improved to 8% of deviation along the stacking sequence. Therefore, prevention from fiber degradation during coating process and controlling coating thickness uniformity along the preform depth were achieved by coating with phenolic resin carbonizing method.

EFFECT OF SECONDARY HEAT TREATMENT ON DIMENSIONAL CHANGES OF ACRYLIC RESIN PARTIAL DENTURE BASE (2차 가열에 의한 국소의치상의 변형에 관한 실험적 연구)

  • Jang, Byung-Gun;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.193-211
    • /
    • 1989
  • The purpose of this study was to investigate the effect of secondary heat treatment on dimensional changes of acrylic resin partial denture base. For this study, 6 specimens were made: 2 groups of 2 specimens, each was treated with $125^{\circ}C$ dry heat and glycerine heat for 3 minutes, and the others were prepared for control group. The change of the internal diameter of specimens were measured after 3 hrs, 1 day, 1 week, 2 weeks, 4 weeks by three-dimensional space analyzer. The results were as follows : 1. All of the acrylic resin denture bases showed tissue ward thermal contraction. 2. Thermal contraction of the mesial area reinforced with metal framework was lesser than that of the distal area without metal framework. 3. Thermal contraction of the lingual flange reinforced with metal framework occured more slowly than that of the buccal flange without the metal framework. 4. The thermal contraction of dry heat treated acrylic resin base, compared to glycerine heat group, was moderately greater and occurred acutely.

  • PDF

Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites (유리섬유강화 에폭시 레진 복합체의 기계적, 유전체 특성에 미치는 첨가제 함유 에폭시 영향)

  • Vu, Cuong Manh;Nguyen, Liem Thanh;Nguyen, Thai Viet;Choi, Hyoung Jin
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.726-734
    • /
    • 2014
  • Three different types of additives, thiokol, epoxidized natural rubber (ENR) and epoxidized linseed oil (ELO), were dispersed in an epoxy matrix before being used in glass fiber (GF) composites, and their effects on the mechanical and dielectric properties of epoxy resin and glass fiber reinforced epoxy composites (GF/EP) were examined. The addition of each of 7 phr ENR, 9 phr ELO and 5 phr thiokol into the epoxy resin increased the fracture toughness significantly by 56.9, 43.1, and 80.0%, respectively, compared to the unmodified resin. The mode I interlaminar fracture toughness of the GF/EP at propagation was also improved by 26.9, 18.3 and 32.7% when each of 7 phr ENR, 9 phr ELO, and 5 phr thiokol, respectively, was dispersed in the epoxy matrix. Scanning electron microscopy showed that the additives reduced crack growth in the GF/EP, whereas their dielectric measurements showed that all these additives had no additional effect on the real permittivity and loss factor of the GF/EP.

Manufacturing and Numerical Analysis of Glass Fiber Chopped Strand Mat Reinforced p-DCPD Composites Processed by S-RIM (S-RIM을 이용한 Glass Fiber Chopped Strand Mat 강화 p-DCPD 복합재료 제작 및 수치해석을 통한 공정 시간 예측)

  • YOO, HYEONGMIN;UM, MOONKWANG;CHOI, SUNGWOONG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.629-634
    • /
    • 2019
  • Dicyclopentadiene is a low viscosity resin which forms a poly-dicyclopentadiene rapidly through ring opening metathesis polymerization (ROMP). This poly-dicyclopentadiene has outstanding properties of low-temperature, water and impact resistances. Due to these advantages, military and offshore structures try to apply the DCPD composites by using liquid composite molding process. In this study, 14%, 38% volume fraction fiber glass strand mat reinforced p-DCPD composites processed by structural reaction injection molding (S-RIM) which has resin-catalsyt mixing head and glass fiber preform in the mold. Additionally, S-RIM numerical analysis was conducted to predict the process time depending on fiber volume fraction and mold temperature. The process time is shorter when it has the lower fiber volume fraction or the higher mold temperature. At higher mold temperature, it is necessary to set the maximum mold temperature considering the resin curing time.

Bonding Performance of Glulam Reinforced with Glass Fiber-Reinforced Plastics (유리섬유강화플라스틱 복합집성재의 접착성능)

  • Park, Jun-Chul;Shin, Yoon-Jong;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.357-363
    • /
    • 2009
  • This study was carried out to investigate whether adhesive used in manufacturing glulam can be used to bond wood and GFRP, when considering working process and economical efficiency. The six different glulams were manufactured, changing the adhesives and the mixing ratios of the adhesives, and investigated by the block shear test and the delamination of the water soaking or boiling water soaking. The three glulams were manufactured, using the resocinol resin based adhesive, the PVAc resin based adhesive and the epoxy resin adhesive, and the other three glulams, using the adhesives mixing resocinol resin and PVAc resin. The block shear strength is higher than $7.1N/mm^2$ in all types, which is standard of KS F3021. However, in the wood failure the block shear strength was the highest as 65.9% in the PVAc. The delamination of glulams glued with PVAc adhesive, which was 1.08% in water soaking and 4.16% in boiling water soaking, was lower than 5.00% which is the standard of KS F 3021, and the adhesive strength is good. In glulams glued with only resocinol resin adhesive, the wood layers were good as 1.26% in the water soaking delamination and 0.00% in the boiling water soaking delamination. The GFRP layers were not good as 21.85% in the water soaking delamination but were good as 1.45% in the boiling water soaking delamination.

Study on a Change of Mechanical Property of denture Resin by Carbon Fiber Filler Content (탄소섬유 첨가에 따른 의치상 레진의 탄성력 관찰)

  • Kim, Ho-Sung
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.165-169
    • /
    • 2014
  • Purpose: This study is a mechanical strength supplementation of denture base resin Polymethyl methacrylate (PMMA) is in general use for denture base resin of the partial and full denture, however, The polymerization process of PMMA is not stabilized. Because of compatibility problems, preceding studies were performed, which were enhancing mechanical strength(Camilo Machado 2007),(Ana M. 2008), addition filler to materials property(Ayse Mese, 2008), self curing method(Hiroshi Shimizu, 2008). Methods: The carbon fiber and polyacetal filler, reinforced the mechanical strength for improving the stability of denture base resin were supplemented to the self cured resin. The Modulus of elasticity and the restoring force were calculated by tensile test. Results: The strengths of the heat and self cured resin were respectively decreased and increased, when the filler was supplemented to the denture base resin and the modulus of elasticity of both heat and self cured resin were not increased, when the filler was supplemented to the denture base resin. Conclusion: The restoring forces of self cured resin containing 10% filler were increased, when the filler was supplemented to the denture base resin.

Effects of Resin Quantity on the Strength Properties of Polyester Resin Concrete (폴리에스터 레진콘크리트에서 수지 사용량에 따른 강도특성)

  • 황광률;소형석;소승영;박홍신;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.235-239
    • /
    • 1994
  • Polymer mortars are mainly used as protective coatings in concrete, reinforced concrete, and more rarely, steel, while polymer concretes represent a new type of structural material capable of withstanding highly corrosive environments. The mechanical properties, chemical stability, and some other useful properties are the reasons research, design, and production organizations. However polymer mortars and polymer concretes have been introduced only recently, and many of their properties are still imperfectly known. And, the main technique in producing polymer concrete is to minimize void volume in the aggregate mass so as to reduce the quantity of the relatively impressive polymer necessary for binding the aggregate. In this study, compressive strength and flexural strength of unsaturated polyester resin concrete are related to quantity of resin and solid volume of aggregate. It was founded that the more solid volume of aggregate increase, the less using quantity of resin decrease with out reducing mechnical properties. When solid volume ratio of aggregate is 70.6%, using quantity of resin is minimized to 10wt.%.

  • PDF