Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates

평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성

  • Kim, Yon-Jig (Division of Mechanical Design Engineering, College of Engineering, Chonbuk National University)
  • 김연직 (전북대학교 공과대학 기계설계공학부)
  • Published : 2009.05.01

Abstract

The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

Keywords

References

  1. F. Dharmawan, G. Simpson, I. Herszberg and S. John, 'Mixed Mode Fracture Toughness of GFRP Composites,' Composite Structures, Vol.75, pp.328-338, 2006 https://doi.org/10.1016/j.compstruct.2006.04.020
  2. D. Lee, 'Fabrication Methods for Composite Automotive Components,' Auto Journal, Vol.28, No.1, pp.27-32, 2006
  3. K. K. Chawla, Composite Materials, SpringerVerlag, New York, USA, pp.58-67, 1987
  4. Y. Kim and J. Lim, 'Synthetic Sea Water and Strain Rate Effects on Tensile Properties of E-Glass/Polyester Composites,' Kor. J. Materials Research, Vol.2, No.2, pp.133-142, 1992
  5. Y. Kim, I. Kwon, J. Lim and S. Chung, 'Effect of Water Absorption on Fatigue Crack Growth Behavior of E-Glass/Polyester Composite,' Kor. J. Materials Research, Vol.3, No.1, pp.84-94,1993
  6. R. O. Ochola, K. Marcus, G. N. Nurick and T. Franz, "Mechanical Behavior of Glass and Carbon Fiber Reinforced Composites at Varying Strain Rates," Composite Structures, V 01.63, pp.455-467,2004 https://doi.org/10.1016/S0263-8223(03)00194-6
  7. A. B. Pereira, A. B. de Morais, M. F. S. F. de Moura and A. G. Magalhaes, 'Mode I Interlaminar Fracture of Woven Glass/Epoxy Multidirectional Laminates,' Composites(A), Vol.36, pp.1119-1127,2005 https://doi.org/10.1016/j.compositesa.2005.01.006
  8. J. Lee, 'The Stress-strain Relationship of Glass Fiber Reinforced Thermoplastic Compositem,' Transactions of KSAE, Vol.4, No.5, pp.206- 214,1996
  9. M. Sakai, R. C. Bradt and D. B. Fischbach, "Fracture Toughness Anisotropy of a Pyrolytic Carbon," J. Materials Science, Vol.21, pp.1491-1501,1986 https://doi.org/10.1007/BF01114701
  10. H. C. Kim, K. J. Yoon, R. Pickering and P. J. Sherwood, "Fracture Toughness of 2-D Carbon Fiber Reinforced Carbon Composites," J. Materials Science, Vol.20, pp.3967-3975, 1985 https://doi.org/10.1007/BF00552386
  11. J. B. Schutz, P. E. Fabian, C. S. Hazelton, T. S. Bauer-McDaniel and R. P. Reed, 'Effects of Cryogenic Irradiation on Electrical Strength of Candidate ITER Insulation Materials,' Cryogenics, Vo1.35, pp.759-762, 1995 https://doi.org/10.1016/0011-2275(95)90908-X
  12. ASTM D 3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Annual Book of ASTM Standard, 2000
  13. ASTM D 790, Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standard, 2003
  14. ASTM D 709, Standard Specification for Laminated Thermosetting Materials, Annual Book of ASTM Standard, 2001
  15. R. W. Messler jr., Joining of Advanced Materials, Butterworth-Heinemann, pp.107-141, 1993
  16. T. L. Anderson, Fracture Mechanics, CRC Press Inc., Boca Raton, Florida, USA, pp.421-426, 1995
  17. J. P. Hou and G. Jeronimidis, "Bending Stiffness of Composite Plates with Delamination," Composites(A), Vol.31, pp.121-132, 2000 https://doi.org/10.1016/S1359-835X(99)00064-0