2차 가열에 의한 국소의치상의 변형에
관한 실험적 연구

연세대학교 치과대학 보철학교실
장병건 · 이호용

I. 서론

국소의치의 의치상은 인공치아와 장착 사이에 위치하여 대합치로 부터 전달되는 교합력을 하부 지지조직으로 분산 전달하는 의치의 한 부분으로서, 소실된 저작력을 보상하여 주기적인 안정도와 유지성의 증대를 기할 수 있는 적당한 새로운 선택, 설계 및 제작이 선행되어야 한다.

의치상의 제조로 주로 사용되는 아크릴트레진은 광학적, 물리적 성질이 우수하고, 제작이 용이하나 금속상에 비하여 낮은 강도와 높은 수축률이 문제가 되어왔다. 3,5,38,40

Mirza31)는 열중합수지와 자기중합수지를 사용 비교하였고, Chevitaresse10)는 수지의 물리적, 화학적 성질에 대하여 연구 발표하였고, Strain50)은 의치용 아크릴트레진에 대한 조직반응을 발표하였으며, Kelley22)는 의치제작용 Polymethyl methacrylate의 변형에 따른 의치의 유지성 변화에 대하여 연구하였 다. 의치상 레진의 심한 수축은 제작된 의치상의 물의 흡수도9), 후구개 경계 페색, 변연색, 완충부위46), 탱액의 변형장력, 탱액의 점도11), 및 배기압과 함께 의치의 안정도와 유지력에 큰 영향을 미치게 된다고 하였다. 13,14,24,31,34,36,37,47).

장기간 사용된 의치는 인공치아의 마모와 더불어 하부 치조골의 흡수에 의하여 의치의 부착함에 의한 불편감, 동통 및 교합부조화에 의한 저작물의 저하와 나아가서는 악판결 기능성

에도 가져올 수 있다. 19,22,23,25,26,29,30,44)

교합면의 재형성은 의치상의 청상(relining)에 의한 유지력과 안정성의 회복과 함께 저작
기능의 항상과 악 관계의 건강회복을 위하여 필수적이다. 29,41,52)

안정된 교합관계를 유지시켜주기 위한 아크릴트레진의 보강이나29) 마모가 낮은 도체거나 금속교합면을 사용할 수 있으며, 25,44) 또한 구치용 콤폴리트레진이 개발됨에 따라 의치교합면의 형성에도 응용될 수 있다. 4,6,13)

콤폴리트레진은 주로 전치부용으로 사용되어 있으나 1970년대 초 다양한 용접제의 개발로 구치부에서도 사용이 가능하게 되었다. 12,16,28)

Wilder55)등이 3년간 class I, II, III, IV등에서 형태적 마모저항도를 최저 98%로까지 보존시켰다고 하였으며, Moffa29)는 복합레진의 구치
부 사용은 매우 효과적인 것으로 보고하였다. 이러한 연구를 토대로 보용된 구치용 복합레진
은 Bausch,21) Davidson12) Wendt55,54) 운57)동
에 의하면 2차적 열처리를 할 경우 간접정강도,
고체성, 변연색성, 색의 안정성, 내마모성 등
의 물리적 성질을 향상시킬 수 있다.

열 변형계수가 큰 아크릴트레진은 이때 사용
된 열에 의하여 콤폴리트레진의 물리적 성질의
변화와 함께27) 의치상재진의 온도수축을 야기
하게 되어서 형태적 정확도에 영향을 미치게
될 것이다. 이러한 목격의 가열은 온도 열 변
형계수를 갖는 아크릴트레진의 수축으로 인하
여 의치상의 형태변화를 가져올 수 있다.
Anthony는 여러 가지의 의치상제료의 형태학적 정확도를 측정하였으며, Grant는 pour-type과 열중합 방식의 변형을 서로 비교하였으며, Pagnianon 등은 마출트레이 제작시 아크릴직제의 변형에 대하여 보고하였으며, 또한 McCartney는 상악의치 제작시 나타나는 의치면의 변형과 의치상의 변형을 측정하였다. 그러나 지금까지 사용된 계측법은 각부위에 대한 상대적 변형을 헌미경이나 vernier caliper를 사용하여 신상측정 하였으므로, 실제의 각 부위별 절대적 변형을 계측하기에는 다소의 문제점이 있다.

이에 저자는 이상과 같은 선후들의 연구를 토대로 아크릴직제의치상에 2차적으로 열을 가한 후 의치상에 포함하는 금속보강제의 유무 및 다양한 가열법에 따른 변형량의 차이를 알 아보기 위하여 의치상 내면을 3차원 공간분석 기를 사용하여 계측한 결과 다소의 지질을 얻었기에 이에 발표하는 바이다.

II. 연구재료 및 방법

가. 연구재료

의치상 용으로 사용되고 있는 열중합용 배경*을 사용하였으며 국소의치 metal framework으로는 chromium-cobalt계의 Premium100**금속을 사용하였다.

* Premium denture Base acrylic, Lang dental, Mfg. Co. InC. (U.S.A.)

** Ticonium Premium 100, Chrome Cobalt hard, Ticonium Division of CMP International, (U.S.A.)

나. 연구방법

1. 시편제작

Kenndey class II의 이상적인 치조골을 가진 환자의 모형을 block out하여 복제한후 의치상용 위한 metal framework을 편측으로 제작하였다. 이때 proximal plate는 측정 과정상 기저부로 사용할 수 있도록 허, 설측 및 상부로 치조골의 장축에 수직이 되도록 연장 확대하여 제작하였다.

제작회사의 지시에 따라 의치상제를 만합하여 의치상을 제작하였으며 의치상의 변형편 관찰하기 위하여 인공치의 식립은 하지 않았다.

제작된 시편은 가적이 지면과 측면이 서로 각이 되도록 고속열매하여 측정기의 block gauge에 맞도록 제작 완성하였으며 시편은 6개를 제작하였다. (Fig. 1)

Fig. 1. Schematic position of metal framework in specimen.

2. 시편처리

제작된 6개의 시편은 1주일간 섬세 36도의 물에 보관한 후 4개는 실험군으로, 나머지 2개는 대조군으로 사용하였다. 실험군으로 사용되는 시편중 2개는 Dry heat oven***에서 3분간 섬세 125도로 열처리 하였으며, 나머지 2개는 섬세 125도의 glycerine에 3분간 열처리 하였다.

*** Dry Heat Oven, 대한 Scientific Company.

3. 측 정

시편의 측정은 3차원 공간분석기*(Fig. 2)와 Micro pack 550 program을 이용하여 X, Y, Z 축상에서 0.0001inch치까지 측정하였다. 시편은 기저면에서 8.8mm 상방을 Z=0라 놓고 각 시편을 Z=-6, -3.1, 6, 11등의 5개 부위로 나누고 치조골 경상에서 증강의 장축방향으로 수직하방 연결하여 닳는 공간상의 각
부위를 \(X = 0, Y = 0 \)로 두었으며 이 점에서의 치상 내면까지의 거리를 탐정기로 추적하면서 5도씩 나누어 측정하였다. (Fig. 3, 4)

1개의 시험당 \(Z = -6, -3, 1, 6, 11 \)부위를 각각 3차 측정하였으며, 1차측정후 실험군은 각각 시험처리 하여서 3시간 후 같은 방법으로 2차측정하고 1일 경후 3차측정, 1주일 후 4차측정, 2주일 후 5차측정, 또한 4주일 후에 6차측정 하였다. 매회 측정 후 시험을 센서 36도의 온도 보관하였다.

* F403 measuring machine, MITUTOYO MFG. CO. LTD. (Japan)

4. 통계처리

실험에서 측정된 결과는 의치상내의 보강체가 들어있는 설측부위를 B군으로, 들어있지 않은 설측부위를 A군으로 하여서 IBM PC의 통계처리 Program SPSS/PC+을 이용하여 시간의 변화와 연중합병에 따른 각 부위의 변화를 Paired t-test로 통계처리 하였다.\(^{33}\)

III. 연구성적

아크릴레진 의치상은 dry heat와 glycerine heat로 처리한 결과 전체적으로 내피가 줄아지는 방향으로 수축이 일어났다. 그러나 Dry heat법에 의한 시험중 \(Z = 1 \)의 부위는 내면에 균열이 생겨서 metal framework의 유무에 따른 변화(Table 5)와 가열법에 따른 변화(Table 8)의 통계처리에서 제외시켰다.

(1) \(Z \)의 위치에 따른 변화(Table 1, 2, 3)

i) Dry heat법

\(Z \)가 metal framework의 지지가 있는 전방 (\(Z = -6, -3, 1 \)) 일수록 변형량이 적었으며, metal framework의 지지가 없는 후방은 많은 양의 변화를 보 수 있었다.
ii) Glycerine heat법

Dry heat법과 비슷한 양상을 나타내었으나 metal framework이 없는 Z=6.11에서 A군의 경우 수축방향이 반대측인 형착으로 일어나고 있었다.

[2] Metal frame work의 유무에 따른 변화 (Table 4, 5, 6)

i) Dry heat법

Metal frame work이 없는 A군이 metal framework이 있는 B군보다 2차 측정시 (3hrs) 90μ m의 급격한 수축이 일어났다가 다시 환원팽창이 일어났다. B군은 수축이 1주일까지 서서히 일어났다가 환원팽창도 서서히 일어났다.

ii) Glycerine heat법

Metal framework이 없는 A군이 metal framework이 있는 B군의 수축량과 비슷하였으나 수축시간이 B군이 더 오래걸렸으며 (1주일), 환원팽창은 A군이 B군보다 1일과 1주일 사이에 급격히 일어났다.

(3) 가열법에 따른 변화 (Table 7, 8, 9)

변화하는 양상은 서로 비슷하였으나 Dry heat법이 좀 더 오래동안 수축이 지속되었으며, 수축량은 Dry heat법이 Glycerine heat법보다 적은 변화를 나타내었다.

<table>
<thead>
<tr>
<th>Table 1-a. Diametral mean changes according to Z-axis location of the control group, Z = -6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (0 - 70)#</td>
</tr>
<tr>
<td>(Diameter (mm))</td>
</tr>
<tr>
<td>Number of cases</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>S.D.</td>
</tr>
<tr>
<td>Difference (Mean)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B (75 - 175)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>S.D.</td>
</tr>
<tr>
<td>Difference (Mean)</td>
</tr>
</tbody>
</table>

* : P < 0.05 B : Flange zone reinforced with metal frame work.
** : P < 0.01 S : Diameter before heat treatment.
: Degree range of A, B zone. S.D. : Standard deviation.
A : Flange zone not reinforced with metal frame work.
Table 1-b. Diametral mean changes according to Z-axis location of the control group, Z = -3.

<table>
<thead>
<tr>
<th>A</th>
<th>Diameter (mm)</th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 – 70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td>5.2242</td>
<td>5.2204</td>
<td>5.2233**</td>
<td>5.2077**</td>
<td>5.1948**</td>
<td>5.2303**</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.214</td>
<td>0.212</td>
<td>0.213</td>
<td>0.211</td>
<td>0.211</td>
<td>0.213</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0038</td>
<td>0.0009</td>
<td>0.0165</td>
<td>0.0294</td>
<td>-0.0061</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B
(75 – 175)

Number of cases	21	21	21	21	21	21
Mean	4.8286	4.8380**	4.8377**	4.8320**	4.8419**	4.8339**
S.D.	0.103	0.103	0.104	0.103	0.105	-0.102
Difference (Mean)	-0.0094	-0.0091	-0.0034	-0.0132	-0.0053	

* : p < 0.05
** : p < 0.01

Table 1-c. Diametral mean changes according to Z-axis location of the control group, Z = 1.

<table>
<thead>
<tr>
<th>A</th>
<th>Diameter (mm)</th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5 – 70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td>4.7619</td>
<td>4.7814**</td>
<td>4.7592**</td>
<td>4.7177</td>
<td>4.7314**</td>
<td>4.7681**</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.229</td>
<td>0.230</td>
<td>0.229</td>
<td>0.206</td>
<td>0.225</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>-0.0195</td>
<td>-0.0027</td>
<td>0.0442</td>
<td>0.0306</td>
<td>-0.0062</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B
(75 – 180)

Number of cases	22	22	22	22	22	22	22
Mean	4.3940	4.3913**	4.3861**	4.3961	4.4078**	4.3874**	
S.D.	0.097	0.097	0.098	0.098	0.100	0.097	
Difference (Mean)	0.0027	0.0080	-0.0021	-0.0137	0.0067		

* : p < 0.05
** : p < 0.01
Table 1-d. Diametral mean changes according to Z-axis location of the control group, $Z = 6$.

<table>
<thead>
<tr>
<th>A (15 - 70)</th>
<th>Diameter (mm)</th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.2499</td>
<td>4.2752**</td>
<td>4.2566**</td>
<td>4.2353**</td>
<td>4.2253**</td>
<td>4.2680**</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.203</td>
<td>0.205</td>
<td>0.203</td>
<td>0.202</td>
<td>0.200</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>-0.0252</td>
<td>-0.0067</td>
<td>0.0146</td>
<td>0.0247</td>
<td>-0.0181</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1-e. Diametral mean changes according to Z-axis location of the control group, $Z = 11$.

<table>
<thead>
<tr>
<th>A (45 - 70)</th>
<th>Diameter (mm)</th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.8487</td>
<td>3.8817**</td>
<td>3.8324**</td>
<td>3.8612**</td>
<td>3.8270**</td>
<td>3.8583*</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.068</td>
<td>0.071</td>
<td>0.068</td>
<td>0.071</td>
<td>0.070</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>-0.0330</td>
<td>0.0163</td>
<td>-0.0125</td>
<td>0.0217</td>
<td>-0.0097</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| B (75 - 180) |
|---------------|---------------|---|---------|---------|----------|----------|----------|
| Number of cases | 22 | 22 | 22 | 22 | 22 | 22 |
| Mean | 4.1097 | 4.1049 | 4.1045** | 4.1043** | 4.1335** | 4.1043 |
| S.D. | 0.103 | 0.100 | 0.102 | 0.104 | 0.106 | 0.100 |
| Difference (Mean) | 0.0049 | 0.0053 | 0.0055 | -0.0238 | 0.0055 |

* : $p < 0.05$
** : $p < 0.01$
Table 2-a. Diametral mean changes according to Z-axis location of the Dry heat group, Z = -6.

<table>
<thead>
<tr>
<th>A</th>
<th>Diameter (mm)</th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 – 75)</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.095</td>
<td>0.093</td>
<td>0.093</td>
<td>0.093</td>
<td>0.096</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>-0.0019</td>
<td>0.0131</td>
<td>0.0113</td>
<td>-0.0196</td>
<td>0.0046</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B
(80 – 165)

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.D.</td>
<td>0.206</td>
<td>0.208</td>
<td>0.205</td>
<td>0.205</td>
<td>0.210</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0162</td>
<td>0.0228</td>
<td>0.0281</td>
<td>0.0233</td>
<td>0.0238</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* : p < 0.05
** : p < 0.01

Table 2-b. Diametral mean changes according to Z-axis location of the dry heat group, Z = -3.

<table>
<thead>
<tr>
<th>A</th>
<th>Diameter (mm)</th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10 – 76)</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Mean</td>
<td>5.7205</td>
<td>5.7186</td>
<td>5.7104**</td>
<td>5.7144*</td>
<td>5.7289**</td>
<td>5.7193</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.513</td>
<td>0.506</td>
<td>0.504</td>
<td>0.505</td>
<td>0.519</td>
<td>0.514</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0019</td>
<td>0.0101</td>
<td>0.0061</td>
<td>-0.0084</td>
<td>0.0012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B
(80 – 170)

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>19</th>
<th>19</th>
<th>19</th>
<th>19</th>
<th>19</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>5.3882</td>
<td>5.3692**</td>
<td>5.3678**</td>
<td>5.3668**</td>
<td>5.3721**</td>
<td>5.3716**</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.263</td>
<td>0.249</td>
<td>0.250</td>
<td>0.252</td>
<td>0.253</td>
<td>0.255</td>
</tr>
<tr>
<td>Difference</td>
<td>0.0189</td>
<td>0.0203</td>
<td>0.0214</td>
<td>0.0161</td>
<td>0.0166</td>
<td></td>
</tr>
</tbody>
</table>

* : p < 0.05
** : p < 0.01
Table 2-c. Diametral mean changes according to Z-axis location of the Dry heat group, Z = 1.

<table>
<thead>
<tr>
<th></th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>3 (hrs)</td>
<td>1 (day)</td>
<td>1 (week)</td>
<td>2 (week)</td>
<td>4 (week)</td>
</tr>
<tr>
<td>Number of cases</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Mean</td>
<td>6.6945</td>
<td>5.2860**</td>
<td>5.4512**</td>
<td>5.4509**</td>
<td>5.4644**</td>
<td>5.4619**</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.609</td>
<td>0.590</td>
<td>0.747</td>
<td>0.749</td>
<td>0.758</td>
<td>0.759</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>1.4085</td>
<td>1.2432</td>
<td>1.2435</td>
<td>1.2301</td>
<td>1.2325</td>
<td></td>
</tr>
</tbody>
</table>

Number of cases	19	19	19	19	19	19
Mean	4.6826	4.9084	4.8675	4.8614	4.8695	4.8679
S.D.	0.496	0.218	0.160	0.161	0.163	0.163
Difference (Mean)	-0.2258	-0.1849	-0.1788	-0.1869	0.1853	

* : p < 0.05
** : p < 0.01

Table 2-d. Diametral mean changes according to Z-axis location of the Dry heat group, Z = 6.

<table>
<thead>
<tr>
<th></th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>3 (hrs)</td>
<td>1 (day)</td>
<td>1 (week)</td>
<td>2 (week)</td>
<td>4 (week)</td>
</tr>
<tr>
<td>Number of cases</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Mean</td>
<td>4.8909</td>
<td>4.8224</td>
<td>4.8726**</td>
<td>4.8457**</td>
<td>4.8717**</td>
<td>4.8716**</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.476</td>
<td>0.551</td>
<td>0.485</td>
<td>0.482</td>
<td>0.494</td>
<td>0.488</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0685</td>
<td>0.0183</td>
<td>0.0452</td>
<td>0.0192</td>
<td>0.0193</td>
<td></td>
</tr>
</tbody>
</table>

Number of cases	19	19	19	19	19	19
Mean	4.8711	4.8244**	4.8209**	4.8114**	4.8272**	4.8449**
S.D.	0.257	0.246	0.244	0.253	0.249	0.258
Difference (Mean)	0.0467	0.0502	0.0597	0.0439	0.0262	

* : p < 0.05
** : p < 0.01
Table 2-a. Diametral mean changes according to Z-axis location of the dry heat group, Z = 11.

<table>
<thead>
<tr>
<th></th>
<th>A (45 – 75)</th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>4.6906</td>
<td>4.6614*</td>
<td>4.6506**</td>
<td>4.6551*</td>
<td>4.6440**</td>
<td>4.6394**</td>
</tr>
<tr>
<td>S.D.</td>
<td></td>
<td>0.142</td>
<td>0.168</td>
<td>0.163</td>
<td>0.173</td>
<td>0.164</td>
<td>0.165</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td></td>
<td>0.0291</td>
<td>0.0400</td>
<td>0.0354</td>
<td>0.0466</td>
<td>0.0511</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-a. Diametral mean changes according to Z-axis location of the glycerine heat group, Z = -6.

<table>
<thead>
<tr>
<th></th>
<th>A (10 – 80)</th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>6.4725</td>
<td>6.3843**</td>
<td>6.3887**</td>
<td>6.4099**</td>
<td>6.4083**</td>
<td>6.4037**</td>
</tr>
<tr>
<td>S.D.</td>
<td></td>
<td>0.333</td>
<td>0.285</td>
<td>0.287</td>
<td>0.301</td>
<td>0.297</td>
<td>0.301</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td></td>
<td>0.0882</td>
<td>0.0837</td>
<td>0.0626</td>
<td>0.0642</td>
<td>0.0687</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-b. Diametral mean changes according to Z-axis location of the dry heat group, Z = 11.

<table>
<thead>
<tr>
<th></th>
<th>B (80 – 170)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>5.4595</td>
<td>5.3798**</td>
<td>5.3865**</td>
<td>5.3928**</td>
<td>5.4203**</td>
<td>5.3948**</td>
</tr>
<tr>
<td>S.D.</td>
<td></td>
<td>0.463</td>
<td>0.471</td>
<td>0.465</td>
<td>0.473</td>
<td>0.490</td>
<td>0.490</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td></td>
<td>0.0797</td>
<td>0.0731</td>
<td>0.0667</td>
<td>0.0392</td>
<td>0.0647</td>
<td></td>
</tr>
</tbody>
</table>

* : p < 0.05
** : p < 0.01
Table 3-b. Diametral mean changes according to Z-axis location of the glycerine heat group, Z = -3.

<table>
<thead>
<tr>
<th></th>
<th>A (0 – 80)</th>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S 3 (hrs) 1 (day) 1 (week) 2 (week) 4 (week)</td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>17 17 17 17 17 17</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.861 0.794 0.795 0.811 0.809 0.816</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0991 0.0852 0.0707 0.0710 0.0638</td>
<td></td>
</tr>
</tbody>
</table>

B (85 – 165)

	Number of cases	17 17 17 17 17 17
Mean	5.3958 5.3570** 5.3542** 5.3515** 5.3719** 5.3569**	
S.D.	0.303 0.283 0.280 0.282 0.288 0.285	
Difference (Mean)	0.0388 0.0416 0.0444 0.0239 0.0389	

* : p < 0.05
** : p < 0.01

Table 3-c. Diametral mean changes according to Z-axis location of the glycerine heat group, Z = 1.

<table>
<thead>
<tr>
<th></th>
<th>A (10 – 80)</th>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S 3 (hrs) 1 (day) 1 (week) 2 (week) 4 (week)</td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>15 15 15 15 15 15</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.9577 5.8885** 5.9001** 5.9258** 5.9100** 5.9218**</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.656 0.638 0.640 0.648 0.646 0.650</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0692 0.0575 0.0319 0.0477 0.0359</td>
<td></td>
</tr>
</tbody>
</table>

B (85 – 170)

	Number of cases	18 18 18 18 18 18
Mean	5.1072 5.0603** 5.0593** 5.0702** 5.0752** 5.0761**	
S.D.	0.330 0.308 0.308 0.313 0.312 0.313	
Difference	0.0469 0.0479 0.0370 0.0321 0.0312	

* : p < 0.05
** : p < 0.01
Table 3-d. Diametral mean changes according to Z-axis location of the glycerine heat group, Z = 6.

<table>
<thead>
<tr>
<th></th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>3 (hrs)</td>
<td>1 (day)</td>
<td>1 (week)</td>
<td>2 (week)</td>
<td>4 (week)</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(25 – 80)</td>
<td>Number of cases</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.8355</td>
<td>5.8228</td>
<td>5.8267</td>
<td>5.8631</td>
<td>5.8569</td>
<td>5.8616</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.469</td>
<td>0.504</td>
<td>0.505</td>
<td>0.509</td>
<td>0.507</td>
<td>0.510</td>
</tr>
<tr>
<td></td>
<td>Difference (Mean)</td>
<td>0.0127</td>
<td>0.0088</td>
<td>-0.0275</td>
<td>-0.0214</td>
<td>-0.0261</td>
<td></td>
</tr>
</tbody>
</table>

B
(85 – 170)

<table>
<thead>
<tr>
<th></th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.2592</td>
<td>5.1965**</td>
<td>5.1975**</td>
<td>5.2227**</td>
<td>5.2382**</td>
<td>5.2305**</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.276</td>
<td>0.260</td>
<td>0.262</td>
<td>0.267</td>
<td>0.267</td>
<td>0.266</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0626</td>
<td>0.0616</td>
<td>0.0365</td>
<td>0.0209</td>
<td>0.0286</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: p < 0.05
**: p < 0.01

Table 3-e. Diametral mean changes according to Z-axis location of the glycerine heat group, Z = 11.

<table>
<thead>
<tr>
<th></th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(45 – 80)</td>
<td>Number of cases</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.095</td>
<td>0.137</td>
<td>0.137</td>
<td>0.134</td>
<td>0.139</td>
<td>0.140</td>
</tr>
<tr>
<td></td>
<td>Difference (Mean)</td>
<td>-0.0594</td>
<td>-0.0459</td>
<td>-0.0801</td>
<td>-0.0866</td>
<td>-0.0897</td>
<td></td>
</tr>
</tbody>
</table>

B
(85 – 155)

<table>
<thead>
<tr>
<th></th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>5.9861</td>
<td>5.9199**</td>
<td>5.9069**</td>
<td>5.9369**</td>
<td>5.9705</td>
<td>5.9543*</td>
<td></td>
</tr>
<tr>
<td>S.D.</td>
<td>0.244</td>
<td>0.209</td>
<td>0.211</td>
<td>0.211</td>
<td>0.202</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0661</td>
<td>0.0792</td>
<td>0.0492</td>
<td>0.0156</td>
<td>0.318</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: p < 0.05
**: p < 0.01
Table 4. Diametral mean changes according to location of metal frame work in the control group.

<table>
<thead>
<tr>
<th>A</th>
<th>Diameter (mm)</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 - 70)</td>
<td>Number of cases</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>4.9004</td>
<td>4.9099**</td>
<td>4.8973**</td>
<td>4.8810*</td>
<td>4.8735**</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.924</td>
<td>0.914</td>
<td>0.922</td>
<td>0.901</td>
<td>0.915</td>
</tr>
<tr>
<td></td>
<td>Difference (Mean)</td>
<td>-0.0095</td>
<td>0.0032</td>
<td>0.0195</td>
<td>0.0269</td>
<td>-0.0058</td>
</tr>
</tbody>
</table>

B
(75 - 175)

Number of cases	108	108	108	108	108	108
Mean	4.7374	4.7369	4.7309**	4.7371	4.7522**	4.7338**
S.D.	0.758	0.758	0.762	0.762	0.770	0.757
Difference (Mean)	0.0005	0.0065	0.0003	-0.0152	0.0036	

* : p < 0.05
** : p < 0.01

Table 5. Diametral mean changes according to location of metal frame work in the dry heat group.

<table>
<thead>
<tr>
<th>A</th>
<th>Diameter (mm)</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 - 75)</td>
<td>Number of cases</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.5567</td>
<td>5.4659</td>
<td>5.5392**</td>
<td>5.5352**</td>
<td>5.5536</td>
</tr>
<tr>
<td></td>
<td>S.D.</td>
<td>0.771</td>
<td>0.800</td>
<td>0.776</td>
<td>0.782</td>
<td>0.795</td>
</tr>
<tr>
<td></td>
<td>Difference (Mean)</td>
<td>0.0908</td>
<td>0.0175</td>
<td>0.0215</td>
<td>0.0032</td>
<td>0.0142</td>
</tr>
</tbody>
</table>

B
(80 - 175)

Number of cases	75	75	75	75	75	75
Mean	5.4589	5.4182**	5.4171**	5.4147**	5.4281**	5.4260**
S.D.	0.550	0.558	0.555	0.558	0.559	0.555
Difference (Mean)	0.0407	0.0418	0.0442	0.0307	0.0329	

* : p < 0.05
** : p < 0.01
Table 6. Diametral mean changes according to location of metal frame work in the glycerine heat group.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (10 - 80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.627</td>
<td>0.591</td>
<td>0.592</td>
<td>0.600</td>
<td>0.600</td>
<td>0.602</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0580</td>
<td>0.0514</td>
<td>0.0270</td>
<td>0.0314</td>
<td>0.0268</td>
<td></td>
</tr>
</tbody>
</table>

B (85 - 170)						
Number of cases	85	85	85	85	85	85
Mean	5.5356	5.4856**	5.4825**	5.4940**	5.5114**	5.5011**
S.D.	0.477	0.467	0.465	0.465	0.470	0.465
Difference (Mean)	0.0499	0.0531	0.0416	0.0241	0.0344	

* : p < 0.05
** : p < 0.01

Table 7. Diametral mean changes of the control group.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>3 (hrs)</th>
<th>1 (day)</th>
<th>1 (week)</th>
<th>2 (week)</th>
<th>4 (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B (0 - 180)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cases</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Mean</td>
<td>4.7969</td>
<td>4.8000*</td>
<td>4.7916**</td>
<td>4.7896*</td>
<td>4.7967</td>
<td>4.7967</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.823</td>
<td>0.820</td>
<td>0.825</td>
<td>0.826</td>
<td>0.825</td>
<td>0.822</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>-0.0031</td>
<td>0.0053</td>
<td>0.0073</td>
<td>0.0002</td>
<td>0.0002</td>
<td></td>
</tr>
</tbody>
</table>

* : p < 0.05
** : p < 0.01
Table 8. Diametral mean changes of the dry heat group.

<table>
<thead>
<tr>
<th></th>
<th>A.B (0 – 170)</th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S 3 (hrs)</td>
<td>1 (day)</td>
<td>1 (week)</td>
<td>2 (week)</td>
<td>4 (week)</td>
</tr>
<tr>
<td>Number of cases</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>Mean</td>
<td>5.4961</td>
<td>5.4629**</td>
<td>5.4635**</td>
<td>5.4605**</td>
<td>5.4758**</td>
<td>5.4703**</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.642</td>
<td>0.660</td>
<td>0.647</td>
<td>0.652</td>
<td>0.658</td>
<td>0.652</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0331</td>
<td>0.0326</td>
<td>0.0355</td>
<td>0.0203</td>
<td>0.0258</td>
<td></td>
</tr>
</tbody>
</table>

* : p < 0.05

** : p < 0.01

Table 9. Diametral mean changes of the glycerine heat group.

<table>
<thead>
<tr>
<th></th>
<th>A.B (10 – 170)</th>
<th>Diameter (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S 3 (hrs)</td>
<td>1 (day)</td>
<td>1 (week)</td>
<td>2 (week)</td>
<td>4 (week)</td>
</tr>
<tr>
<td>Number of cases</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Mean</td>
<td>5.8015</td>
<td>5.7480**</td>
<td>5.7491**</td>
<td>5.7662**</td>
<td>5.7742**</td>
<td>5.7704**</td>
</tr>
<tr>
<td>S.D.</td>
<td>0.625</td>
<td>0.603</td>
<td>0.605</td>
<td>0.611</td>
<td>0.608</td>
<td>0.611</td>
</tr>
<tr>
<td>Difference (Mean)</td>
<td>0.0534</td>
<td>0.0524</td>
<td>0.0353</td>
<td>0.0273</td>
<td>0.0311</td>
<td></td>
</tr>
</tbody>
</table>

IV. 총괄 및 고찰

의치상태진은 polymethyl methacrylate로서 색상이나 광학적 성질이 안정되어있고, 조작이 용이하여 의치상의 재료로 많이 사용되고 있다. 캐주성분으로는 inhibitor, additive, initiator, pigments, crosslinking agent로 되어있으며 이들의 중합기간은 benzoyl peroxyd에 의해 60도 이상이 되면 분해되어서 자유기를 형성하여 단계분자와 작용하여 새로운 자유기를 생성시키며 이것은 다시 단합체와 불안의 고리를 정점 위치에 하여서 붙어 날 때까지 진행이 된다.

레진의 변형은 제작과정이나 구강내에서 기능을 하는 동안 일어나는데 중합중의 부피수축은 7%이며 이동을 3배곱근으로 환산하면 선상 수축은 약 2%에 해당이 된다. 그러나 이것은 의치제작시 flask내의 stone로령에 의하여 입상적으로는 나타나지 않는 것으로서 의치상의 변형은 온도수축이 더 적절적인 원인이 된다고 볼 수 있다.

Wolfaardt 등은 제작시 관계하는 메몰제, 분리제, acrylic ratio, 압축력, cure rate등으로 각각 분석하였는데 레진변형의 크기를 결정하는 가장 큰 요소는 레진의 두께에 의한다고 하였으며 수축의 방향은 두꺼운 쪽으로 일어나서 치조골 부위에서 간격(間隔)이 가장 크게 나타난다. 이는 구강내 변형된 의치 장착시 부적합에 의하여 구개부위에 인정력이 나타나서 의치탈락을 일으키는 원인이 되는 것이다.

Skinner, Sweeney, Osborne 등은 수축 정도는 제작과정 중 가해지는 열의 양과 밀접
한 관계가 있다고 보고하였다. 의치상의 2차 가열방법은 oven을 이용한 dry heat로 처리할 수 있는데 Wndt, 윤등이 이를 사용하여 연구보고한 바 있다. 또한 다른방법은 glycerine를 이용하여 섬계 125도의 온도 억울 수 있기 때문에 본 저자는 Glycerine heat법을 더 체택하여 실험한 결과 Dry heat법과 Glycerine heat법에 의하여 변형을 관찰할 수 있었다.

수축의 방향은 치조골조직축으로 대칭이 줄어지는 양상을 나타내었는데 이는 Anthony의 상악의치관 부위가 개개인 의치탈삭의 원인 이 된다는 보고와 일치하였다.

시간에 따른 수축량의 변화는 Anthony가 8 개월을 경과한 후에는 열중합재료의치상의 변화가 비교적 안정이 되었다고 하였으며, Gee등은 절제의치상 증후치조골부위의 간격이 급격히 변화하였으나 2개월 후에는 비교적 적은 수축만이 보이고 있다고 하였다. 본 실험에서 1개월이 지난 후의 실험군은 비교적 안정된 변화만 나타내는 것으로 보아 이들의 보고와 합자하였다.

Pagnianon은 상온온상태진의 선상수축은 1시간 이내에 급격하게 변화하며 나머지는 24시간 이내에 모두 일어나므로 해직절제 사용시 끓어지 않으면 제작후 최소한 두시간이 지나야 하며, 9시간이 경과하면 심한변형은 보이지 않는다고 하였다. 이러한 레진의 변형을 감안할 때 섬계 125도의 열을 가한 후 실험군에서 나타난 온도수축은 Dry heat법과 Glycerine heat법에서 모두 24시간 이내에 급격한 변화가 일어나는 것으로 이들의 실험과 비슷한 양상을 보여주고 있다.

열을 가하였을때 Z의 위치에 따른 의치상의 내경의 변화는 배지의치상의 있는 부위에서 비교적 적게 나타났으나 metal framework이 없는 Z=6.11 부위는 큰 변화를 나타내었다. 그러나 Glycerine heat법의 경우 metal framework이 없는 첫촉의치상의 변형이 현저로 벌어졌다가 다시 오르막의들었다는 Anthony의 보고서에서의 하악 총의치의 섬계 의치면이 벌어졌다가 다시 오르막으로 양상과 일치하였다. 이러한 현상은 각각의 시편 제작 과정상 의치면의 두께를 모두 동일하게 형성하기가 어렵기 때문에 수축의 방향이 두께 에 따라 서로 상반되게 나타남 것으로 사료되며, 본 실험의 통계분석결과 신뢰도가 없는 것으로 나타났다. (Table 3-d, e) 그러나 Dry heat법의 경우 비교적 Z의 위치에 관계없이 비슷한 양상을 보였다.

Dry heat법에서 metal framework이 없는 협측이 3시간후 90μm까지 급격하게 수축이 일어나다가 다시 환원형이 일어나면서 서서히 회복되는 양상을 보였으며, metal framework이 있는 치조골부위는 1주일까지 서서히 수축이 일어났다가 다시 서서히 환원형이 일어났다. Glycerine heat법에서도 Dry heat법과 비슷한 양상의 변화를 나타내었는데 이는 metal framework이 의치상재진의 수축작용을 어느정도 억제한다고 Henderson가 보고한 바 있다.

Dry heat법 및 Glycerine heat법 모두 비슷한 양상의 변형을 보이고 있으나 Glycerine heat법이 Dry heat법보다 다소 수축량이 크게 나타났다. Wndt의 보고에 의하면 실제의 온도와 시편의 심부(Core)온도는 서로 차이가 난다고 하였는데 이는 본 실험의 glycerine에 의한 심부까지의 열의 전달이 dry heat에 의한 전달보다 커서 이러한 변형량의 차이가 나타나는 것으로 설명할 수 있으나 이에 대한 연구가 더 필요할 것으로 사료된다.

본 실험에서 나타난 의치상의 수축은 1개월이 경과후 약 30~60μm 정도 이었다. 이러한 변형량은 McCrathney에 의하면 환자가 이동감을 느끼기에는 충분한 양이라 Gustaf의 실험에서 jaw elevator truńus가 교정의 변화에 대한 적응력이 떨어진다면 의치상재진의 변형에 의한 환자의 부적응종은 나타나지 않을 것으로 사료된다. 본 실험은 의치상에 인공차를 적절 식립하지 않았으므로 치조골 성상부위의 제조두께의 증가로 인한 의치상 내면의 변화 또한 다양하게 나타날 것이라므로 이에 대한 계속적인 연구가 더 필요하다.
국소의 치 아크릴리트판상의 2차 가열시의치상의 변형을 관찰하기 위하여 6개의 실험의치상을 제작하여 대조군과 실험군으로 나누어서 석히 125도의 dry heat과 glycerine heat으로 가열처리하여 3시간, 1일, 1주일, 2주일, 4주일 간격으로 3차원 공간분석기를 이용하여 계측한 결과 다음과 같은 결론을 얻었다.
1. 모든경우 레진의치상은 모두 내경이 좁아지는 수축을 보였다.
2. 실험의치상의 metal framework의 지지가 있는 전방(\(Z = -6, -3, 1\))에 metal framework이 없는 후방(\(Z = 6, 11\))보다 수축량이 적었다.
3. 실험의치상의 metal framework이 있는 실험에 있는 협측보다 수축이 서서히 일어났으며, 환원방장도 서서히 일어났다.
4. Glycerine heat법이 Dry heat법보다 의치상 수축이 크게 나타나며 다소 급격한 수축 및 팽창을 보였다.

REFERENCES

53. Wendt, S. L.: The effect of heat used as a secondary cure upon the physical properties of three composite resins.

54. Wendt, S.L.: The effect of heat used as a secondary cure upon the physical properties of three composite resins.

57. 윤흥철: 중합제후의 가열이 복합체간의 기계적 성질에 미치는 영향에 관한 실험적 연구 (석사학위 논문, 연세대학교 대학원, 1987).
Abstract —

EFFECT OF SECONDARY HEAT TREATMENT ON DIMENSIONAL CHANGES OF ACRYLIC RESIN PARTIAL DENTURE BASE

Byung Gun Jang · Ho Yong Lee,

Department of Dental Science, College of Dentistry Yonsei University

The purpose of this study was to investigate the effect of secondary heat treatment on dimensional changes of acrylic resin partial denture base.

For this study, 6 specimens were made: 2 groups of 2 specimens, each was treated with 125°C dry heat and glycerine heat for 3 minutes, and the others were prepared for control group.

The change of the internal diameter of specimens were measured after 3 hrs, 1 day, 1 week, 2 weeks, 4 weeks by three-dimensional space analyzer.

The results were as follows:

1. All of the acrylic resin denture bases showed tissueward thermal contraction.
2. Thermal contraction of the mesial area reinforced with metal framework was lesser than that of the distal area without metal framework.
3. Thermal contraction of the lingual flange reinforced with metal framework occured more slowly than that of the buccal flange without the metal framework.
4. The thermal contraction of dry heat treated acrylic resin base, compared to glycerine heat group, was moderately greater and occurred acutely.