• 제목/요약/키워드: Regularization Parameter

검색결과 94건 처리시간 0.024초

MULTI-PARAMETER TIKHONOV REGULARIZATION PROBLEM WITH MULTIPLE RIGHT HAND SIDES

  • Oh, SeYoung;Kwon, SunJoo
    • 충청수학회지
    • /
    • 제33권4호
    • /
    • pp.505-516
    • /
    • 2020
  • This study shows that image deblurring problems can be transformed into the multi-parameter Tikhonov type with multiple right hand sides. Also, this paper proposes the extension of the global generalized cross validation to obtain an appropriate choice of the regularization parameters for this problem. The experimental results of using the preconditioned Gl-CGLS algorithm were analyzed.

전기 임피던스 단층촬영법에서 잔류오차 기반의 반복적 조정기법을 이용한 영상 복원 (Image Reconstruction Using Iterative Regularization Scheme Based on Residual Error in Electrical Impedance Tomography)

  • 강숙인;김경연
    • 전기전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.272-281
    • /
    • 2014
  • 전기 임피던스 단층촬영법을 이용한 정적 영상 복원에서 대표적으로 사용되고 있는 복원 알고리즘은 modified Newton-Raphson(mNR) 알고리즘으로 수렴 속도 및 추정 정확도 측면에서 비교적 다른 알고리즘들에 비해 좋은 성능을 나타낸다. mNR 알고리즘에서는 측정 전압과 계산 전압과의 차이, 즉 잔류오차를 최소화하도록 목적함수를 설정하고 이를 반복 연산하여 내부의 저항률 분포를 추정한다. 이때 EIT 역문제의 비정치성을 완화시키기 위해 조정방법을 사용하며 조정인자에 따라 서로 다른 영상 복원 성능을 나타낸다. 기존 기법에서는 반복 연산마다 일정한 상수 값의 조정인자를 사용하기 때문에 대상 물체의 내부 상태가 변하거나 측정 잡음 등이 있는 경우 때때로 조정인자에 따라 영상 복원이 수렴되지 않는다. 따라서 본 논문에서는 영상 복원 수렴 및 성능을 개선하기 위하여 잔류오차에 기반하여 반복 연산마다 자동적으로 조정인자를 수정하는 기법을 제안하였다. 시뮬레이션과 실험을 수행하여 제안된 기법의 영상 복원성능을 평가한 결과 비교적 양호한 성능을 나타내었다.

STABILITY ANALYSIS OF REGULARIZED VISCOUS VORTEX SHEETS

  • Sohn, Sung-Ik
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.843-852
    • /
    • 2016
  • A vortex sheet is susceptible to the Kelvin-Helmhotz instability, which leads to a singularity at finite time. The vortex blob model provided a regularization for the motion of vortex sheets in an inviscid fluid. In this paper, we consider the blob model for viscous vortex sheets and present a linear stability analysis for regularized sheets. We show that the diffusing viscous vortex sheet is unstable to small perturbations, regardless of the regularization, but the viscous sheet in the sharp limit becomes stable, when the regularization is applied. Both the regularization parameter and viscosity damp the growth rate of the sharp viscous vortex sheet for large wavenumbers, but the regularization parameter gives more significant effects than viscosity.

NUMERICAL METHDS USING TRUST-REGION APPROACH FOR SOLVING NONLINEAR ILL-POSED PROBLEMS

  • Kim, Sun-Young
    • 대한수학회논문집
    • /
    • 제11권4호
    • /
    • pp.1147-1157
    • /
    • 1996
  • Nonlinear ill-posed problems arise in many application including parameter estimation and inverse scattering. We introduce a least squares regularization method to solve nonlinear ill-posed problems with constraints robustly and efficiently. The regularization method uses Trust-Region approach to handle the constraints on variables. The Generalized Cross Validation is used to choose the regularization parameter in computational tests. Numerical results are given to exhibit faster convergence of the method over other methods.

  • PDF

Prediction of propagated wave profiles based on point measurement

  • Lee, Sang-Beom;Choi, Young-Myoung;Do, Jitae;Kwon, Sun-Hong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.175-185
    • /
    • 2014
  • This study presents the prediction of propagated wave profiles using the wave information at a fixed point. The fixed points can be fixed in either space or time. Wave information based on the linear wave theory can be expressed by Fredholm integral equation of the first kinds. The discretized matrix equation is usually an ill-conditioned system. Tikhonov regularization was applied to the ill-conditioned system to overcome instability of the system. The regularization parameter is calculated by using the L-curve method. The numerical results are compared with the experimental results. The analysis of the numerical computation shows that the Tikhonov regularization method is useful.

영상 복원을 위한 자기 정규화 방법 (Self-Regularization Method for Image Restoration)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.45-52
    • /
    • 2016
  • 본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 위너 필터(Wiener filter)는 원본 영상과 잡음의 파워 스펙트럼 등의 사전 정보를 요구한다. 제약된 최소자승 복원 역시 노이즈 수준에 대한 지식을 요구한다. 사전 정보가 없으면 티코노프(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수가 필요하다. 본 논문에서는 주파수 영역에서 선형 시스템의 바이어스 항목과 티코노프 정규화 시스템의 평활화 항목을 연결하는 자기 정규화 방법을 제안하고 영상 복원 문제에 적용한다. 실험결과는 제안하는 방법의 효능을 보여준다.

ON THREE SPECTRAL REGULARIZATION METHODS FOR A BACKWARD HEAT CONDUCTION PROBLEM

  • Xiong, Xiang-Tuan;Fu, Chu-Li;Qian, Zhi
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1281-1290
    • /
    • 2007
  • We introduce three spectral regularization methods for solving a backward heat conduction problem (BHCP). For the three spectral regularization methods, we give the stability error estimates with optimal order under an a-priori and an a-posteriori regularization parameter choice rule. Numerical results show that our theoretical results are effective.

PRECONDITIONED GL-CGLS METHOD USING REGULARIZATION PARAMETERS CHOSEN FROM THE GLOBAL GENERALIZED CROSS VALIDATION

  • Oh, SeYoung;Kwon, SunJoo
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.675-688
    • /
    • 2014
  • In this paper, we present an efficient way to determine a suitable value of the regularization parameter using the global generalized cross validation and analyze the experimental results from preconditioned global conjugate gradient linear least squares(Gl-CGLS) method in solving image deblurring problems. Preconditioned Gl-CGLS solves general linear systems with multiple right-hand sides. It has been shown in [10] that this method can be effectively applied to image deblurring problems. The regularization parameter, chosen from the global generalized cross validation, with preconditioned Gl-CGLS method can give better reconstructions of the true image than other parameters considered in this study.

Large-scaled truss topology optimization with filter and iterative parameter control algorithm of Tikhonov regularization

  • Nguyen, Vi T.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.511-528
    • /
    • 2021
  • There are recently some advances in solving numerically topology optimization problems for large-scaled trusses based on ground structure approach. A disadvantage of this approach is that the final design usually includes many bars, which is difficult to be produced in practice. One of efficient tools is a so-called filter scheme for the ground structure to reduce this difficulty and determine several distinct bars. In detail, this technique is valuable for practical uses because unnecessary bars are filtered out from the ground structure to obtain a well-defined structure during the topology optimization process, while it still guarantees the global equilibrium condition. This process, however, leads to a singular system of equilibrium equations. In this case, the minimization of least squares with Tikhonov regularization is adopted. In this paper, a proposed algorithm in controlling optimal Tikhonov parameter is considered in combination with the filter scheme due to its crucial role in obtaining solution to remove numerical singularity and saving computational time by using sparse matrix, which means that the discrete optimal topology solutions depend on choosing the Tikhonov parameter efficiently. Several numerical examples are investigated to demonstrate the efficiency of the filter parameter control algorithm in terms of the large-scaled optimal topology designs.