DOI QR코드

DOI QR Code

Image Reconstruction Using Iterative Regularization Scheme Based on Residual Error in Electrical Impedance Tomography

전기 임피던스 단층촬영법에서 잔류오차 기반의 반복적 조정기법을 이용한 영상 복원

  • Kang, Suk-In (Faculty of Applied Energy System, Major of Electronic Engineering, Jeju National University) ;
  • Kim, Kyung-Youn (Dept. of Electronic Engineering, Jeju National University)
  • Received : 2014.06.07
  • Accepted : 2014.06.21
  • Published : 2014.06.30

Abstract

In electrical impedance tomography (EIT), modified Newton Raphson (mNR) method is widely used inverse algorithm for static image reconstruction due to its convergence speed and estimation accuracy. The unknown conductivity distribution is estimated iteratively by minimizing a cost functional such that the residual error namely the difference in measured and calculated voltages is reduced. Although, mNR method has good estimation performance, EIT inverse problem still suffers from ill-conditioned and ill-posedness nature. To mitigate the ill-posedness, generally, regularization methods are adopted. The inverse solution is highly dependent on the choice of regularization parameter. In most cases, the regularization parameter has a constant value and is chosen based on experience or trail and error approach. In situations, when the internal distribution changes or with high measurement noise, the solution does not get converged with the use of constant regularization parameter. Therefore, in this paper, in order to improve the image reconstruction performance, we propose a new scheme to determine the regularization parameter. The regularization parameter is computed based on residual error and updated every iteration. The proposed scheme is tested with numerical simulations and laboratory phantom experiments. The results show an improved reconstruction performance when using the proposed regularization scheme as compared to constant regularization scheme.

전기 임피던스 단층촬영법을 이용한 정적 영상 복원에서 대표적으로 사용되고 있는 복원 알고리즘은 modified Newton-Raphson(mNR) 알고리즘으로 수렴 속도 및 추정 정확도 측면에서 비교적 다른 알고리즘들에 비해 좋은 성능을 나타낸다. mNR 알고리즘에서는 측정 전압과 계산 전압과의 차이, 즉 잔류오차를 최소화하도록 목적함수를 설정하고 이를 반복 연산하여 내부의 저항률 분포를 추정한다. 이때 EIT 역문제의 비정치성을 완화시키기 위해 조정방법을 사용하며 조정인자에 따라 서로 다른 영상 복원 성능을 나타낸다. 기존 기법에서는 반복 연산마다 일정한 상수 값의 조정인자를 사용하기 때문에 대상 물체의 내부 상태가 변하거나 측정 잡음 등이 있는 경우 때때로 조정인자에 따라 영상 복원이 수렴되지 않는다. 따라서 본 논문에서는 영상 복원 수렴 및 성능을 개선하기 위하여 잔류오차에 기반하여 반복 연산마다 자동적으로 조정인자를 수정하는 기법을 제안하였다. 시뮬레이션과 실험을 수행하여 제안된 기법의 영상 복원성능을 평가한 결과 비교적 양호한 성능을 나타내었다.

Keywords

References

  1. J. G. Webster, Electrical Impedance Tomography, IOP Publishing Ltd, 1990.
  2. D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications, IOP Publishing Ltd, 2005.
  3. M. Vauhkonen, Electrical Impedance Tomography and prior information, Ph.D. Thesis, University of Kuopio, Finland, 1997.
  4. K. Y. Kim and B. S. Kim, "Regularized Modified Newton-Raphson Algorithm for Electrical Impedance Tomography Based on the Exponentially Weighted Least Square Criterion," Journal of IEEE Korea Council, Vol.4, No.2, pp.77-84, 2000.
  5. T. J. Yorkey, J. G. Webster and W. J. Tompkins, "Comparing Reconstruction Algorithms for Electrical Impedance Tomography," IEEE Transactions on Biomedical Engineering, Vol.34, No.11, pp.843-852, 1987.
  6. M. Cheney, D. Isaacson, J.C. Newell, S. Simske and J. Goble, "NOSER: An algorithm for solving the inverse conductivity problem," Int. J. Imaging Syst. Technol., Vol.2, No.2, pp.66-75, 1990. https://doi.org/10.1002/ima.1850020203
  7. E. Somersalo, M. Cheney and D. Isaacson, "Existence and uniqueness for electrode models for electric current computed tomography," SIAM J. Appl. Math., Vol.52, No.4, pp.1023-1040, 1992. https://doi.org/10.1137/0152060
  8. B. S. Kim, A. K. Khambampati, S. Kim and K. Y. Kim, "Image reconstruction with an adaptive threshold technique in electrical resistance tomography," Measurement Science and Technology, Vol.22, No.10, pp.1-12, 2011.
  9. Tushar Kanti Bera, Samir Kumar Biswas, K. Rajan and J. Nagaraju, "Improving Image Quality in Electrical Impedance Tomography(EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique : A Simulation Study," Journal of Electrical Bioimpedance, Vol.2, pp.2-12, 2011.
  10. M. Vauhkonen, W. R. B. Lionheart, L. M. Heikkinen, P. J. Vauhkonen and J. P. Kaipio, "A Matlab package for the EIDORS project to reconstruct two-dimensional EIT images," Physiological Measurement, Vol.22, No.1, pp.1-5, 2000.

Cited by

  1. Application of Matrix Adaptive Regularization Method for Human Thorax Image Reconstruction vol.19, pp.1, 2015, https://doi.org/10.7471/ikeee.2015.19.1.033
  2. Resistivity Image Reconstruction Using Interacting Dual-Mode Regularization vol.20, pp.2, 2016, https://doi.org/10.7471/ikeee.2016.20.2.152