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NUMERICAL METHODS USING
TRUST-REGION APPROACH FOR SOLVING
NONLINEAR ILL-POSED PROBLEMS

SunyounGg Kim

ABSTRACT. Nonlinear ill-posed problems arise in many application in-
cluding parameter estimation and inverse scattering. We introduce a
least squares regularization method to solve nonlinear ill-posed problems
with constraints robustly and efficiently. The regularization method uses
Trust-Region approach to handle the constraints on variables. The Gen-
eralized Cross Validation is used to choose the regularization parameter
in computational tests. Numerical results are given to exhibit faster
convergence of the method over other methods.

1. Introduction

Differential equations describing many real-life models must be solved
numerically. This involves discretization and transformation to a system
of nonlinear algebraic equations,

(1) F(x,y)=0, 0<x<b

where the dimensions of vectors F,x,y depend on the number of dis-
cretization. Let x € R™, F and y € R", where m < n. Then, (1)
becomes

(2) min ||[F(x,y)||3, 0<x<b.

Problem (2) is said te be well-posed if: (i) for any y € R", there ex-
ists a solution x € R™; (ii) the solution x is unique; (iii) the solution
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x depends continuously on the data y. Otherwise, the problem is ill-
posed. Examples of nonlinear ill-posed problem are inverse problems of
differential equations (i.e., parameter estimation) [6], inverse scattering,
nonlinear Fredholm first kind equation [8].

The purpose of this paper is to solve nonlinear ill-posed problems effi-
ciently, which, in most cases, is impossible with usual numerical methods.
In many modeling problems, obtaining accurate solutions is very impor-
tant. One way to achieve this is by discretizing the differential equations
with small intervals. This, in turn, results a large number of equations
and parameters. As the number of parameters and equations of problem
(2) increases, it tends progressively difficult to solve the problem. There-
fore, it is essential to develop a stable numerical method that provides
accurate solutions.

Before we present numerical methods to solve (2) for any value of
y that corresponds to 0 < x < b, we discuss Trust-Region approach
briefly. Trust-Region approach has been well-knowa for unconstrained
optimization problems

min f(z)

where f : R® — R is smooth [1]. It usually generates a new iterate
Tg+1 = Tk + s from the current approximation z; by solving the sub-
problem

(3) min M(z) subject to |[s||* < 5°

where M(z) is a quadratic approximation to f(z4 + s) and 3 > 0. If the
solution s for (3) decreases the value of f(xy), viz., f(zy + ) < f(xx),
then z44, = z3+s. Otherwise, the trust region parameter 3 is decreased
and solve (3) until either f(xg +s) < f(zy) or 8 ~ 0. when the iteration
1s terminated. In order to solve (2), we develop a method utilizing the
Trust-Region approach that handles restriction on x properly. We first
discuss how (2) has been solved by outlining Algorithm 2 in [rpt] and
then show how the Trust-Region approach can be used to circumvent
the ill-conditioning and bounds on x.

Algorithm 1[11] (y fixed, x variable)
1. Given y, assume an initial value for x.
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2. Compute F(z,y). If |F(z,y)|l2 < €, where ¢ is a small number, or
too many iterations have been done, then stop; else compute

dF F Ly) — F(z, .
A Fixteeny)-Flew) o
dx €

where e; is the jth column of the identity matrix of order m.
3. Solve

dF
(4) Eéx = “F(Ia y)

for 6x, and let x = x + 6x. Go to step (2).

Step (3) of the above algorithm involves the solutions of a system of
linear equations. Let J = %}—‘T— and y = —F(x,y). Since x € R™ and
J is a n x m matrix, solving equation (4) is equivalent to the linear

least-squares problem

(5) min ||.Jéx — ]f3.

One of well-known methods for solving (5) is Gauss-Newton method
[9]. Instead of solving Jéx = y in Algorithm 1,

JTIéx = JTy

1s solved for éx. However, Gauss-Newton method fails to provide a
solution for many problems due to its computational aspects [2]. It
often exhibits large oscillations. One of the features of nonlinear ill-
pose problems is that J in (5) is often ill-conditioned and therefore its
condition number is very large. For these reasons, Gauss-Newton method
and other methods for (5) are unsuccessful. Let us look at (5) carefully.
Problem (5) is called discrete ill-posed [3.5] if the following conditions
are satisfied:

1. The singular values of J decay gradually to zero.
2. The ratio between the largest and the sinallest nonzero singular
values is large.
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For this problem, standard methods such as LU, Cholesky, QR fac-
torization may give inappropriate results with large oscillations. One of
the popular methods for ill-posed problems is called Tikhonov regular-
ization method [12], from which many numerical methods for ill-posed
problem have originated. In the next section, we mention a regulariza-
tion method using generalized singular value decomposition and present
a method using Trust-Region approach. We also modify the problem so
that a meaningful solution can be determined. Then, we will present
numerical results showing better performance of our suggested method
over other methods.

2. Numerical Methods

In Tikhonov Regularization method, we define the regularized solu-
tion x as the following minimizer of the weighted combination of the
residual norm and the side constraint

min{||Jéx — 3 + 7|l L(éx — éx*) 3},

where 6x* is an initial estimate and L is typically either identity matrix
or a p x n discrete approximation of the (n — p)th derivative operator.

The successful numerical tools for nonlinear ill-posed problems are
the Singular Value Decomposition (SVD) of J [4] and the Generalized
Singular Value Decomposition (GSVD) of the matrix pair (J,L). It
is known that the SVD reveals the difficulties associated with the ill-
conditioning of the matrix J while the GSVD of (J, L) yields important
insight into the regularization problem involving J and L [5]. For this
reason, we discuss the GSVD and use it to present a new algorithm.
The numerical method using the GSVD is called modified regularization
method.

Modified Regularization Method (R1) Minimization problem (5)
is modified to

(6) min{ |Jx — 1 + 1| Léx3}
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where L is a discrete approximation to some derivative operator and «
is a free parameter. Let L be an (m — 1) X m matrix of rank of (m — 1).
Problem (6) is equivalent to solving the least squares solution to the
overdetermined linear system [13]

() (3).

which leads to the normal equation
(7) (JTT+ 4 LTLyéx = J7y.

Since v is a free parameter, equation (7) must be solved for various values
of . But, it is pointed out in [13], that solving (7) with different v’s is
not as effective as the regularization method solving

min{|Jéx ~ §l; +*[16x]}.

This method is a special case of (6) when L = I. Since we are interested
in solving (6), we use the Generalized Singular Value Decomposition
technique. The Generalized Singular Value Decompositions of J and L
are

J=UD,P™', L=VD.P},

where U and V' are, respectively, n x n and (m — 1) x (m — 1) orthogonal
matrices, D, = diag(ay,...,a, ) and

[&] |
- |
D.= : | 0
|
Cm -1 ‘
In view of the above equations, from (7) it follows that

(D?+4*DTD )P~ 'éx = D, Uy,
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which leads to

T
(8) bx = Z( a; +U7zy:)2/at )p

where p; is the ith column of P. If the modified regularization method
1s used to solve ill-posed problem, the following algorithm can be used.

Algorithm 2

1. L is given. Get an initial guess X,.

fork=1,---

Compute the Jacobian J(xy).

Find the GSVD with J(x4) and L.

Choose 7 from GCV (Generalized Cross Validation) fun-ctional.
Compute ka = X + 0X using (8)

fori=1,---.m

if Xk+1( > b( ) then Xk+]( ) (Z)

if xk+1( < 0( ) then Xk+]( ) == O(Z)

Algorithm 2 is simple conceptually and easy to implement with
respect to handling the bounds on x;. However, seiting x4 to the value
of the bounds when xj is too large or too small may cause divergence
of the iterates from a solution. This may happen more than often for
solving ill-posed problems because the changes to iterates must be made
carefully. This leads us to explore other possibilities, e.g., Trust-Region
method, for the bounds on x;.

.'\’.@Y-“:“P’!\’

A Regularization Method using Trust-Region Approach (R2)
We would like to develop a regularization method with the General-
ized Singular Value Decomposition and Trust-Region approach. We first
transform (6) to a constrained minimization problem. Let Jx; +y = =.
Since

JOx — g = J(Xpq1 — k) — ¥,

we have
(9) min{||Jxx+1 — z||5 + v?|| Lxes [|2}
Xk+1

subject to 0 < xx11 < b
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Notice that it minimizes on Xx4;. It is based on the fact that we only
know the bounds on x4’s. One way to solve (9) is to include Trust-Region
approach for constraints on Xx4;. Let X41; = Z. Then, the problem (9)
is equivalent to the constrained problem:

(10) min{||Jx — z||2 + ¥?||Lx||?} subject to ||x]|2 < a?,
1 2 2 2

where o = ||b||,. If we use the GSVD described in the modified regular-
1zation method, we get

(D?+~+°DTD,)P~'x = D,UTz, subject to ||x||2 < a”.

Our approach for solving the above problem is to use the first-order
necessary conditions [7],

(11) (D2 ++4°DI'D )P~ 'x -~ D,UTz + Ax = 0,
subject to [|x||? < a?, A|Ix|* —a? =0, A>0.

For computation of a solution x4 of (11), we utilize a routine in NETLIB
for constrained minimizations. An algorithm for the regularization meth-
od using Trust-Region approach is given as follows.

Algorithm 3

1. L 1s given. Get an initial guess x,.
fork=1,---

Compute the Jacobian J(xg).

Find the GSVD with J(xx) and L.

Choose v from GCV functional.

Compute (D2 +~2DTD_)P~! and D,U"z.
Solve (11) for x4, using a NETLIB routine.

In Algorithm 3, we do not set the values of X441 to 0 or b as Algo-
rithm 2. Rather, we solve (11) with the bounds on x;. This is possible
by transforming the problem (6) to the constrained minimization prob-
lem (11).

NS U LN
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3. Computational Results

We apply the numerical methods in the previous section to a severely
ill-posed problem arising in a modeling problem of physiology [10]. We
describe the problem briefly. The differential equations for the model
are:

dF,,
dw T Jiv(w) =0,
Fiv &) :
.‘i_ci —+ Jik(“’) = 0’ ? :/é 4,
dw
dF 4.
ko Jik(w) =0,
dw
dC
—k Fyr + F4,Cqy = 0,
dw

4
ZJ,‘U(w) =0, Z Jir(w) =0
=1

i=1
where J;,(w) and Jit(w) are, respectively, volume and solute fluxes,
Dy are the diffusion coefficients and F,ix(w) are the axial solute flows,
Jiv(w) and J;x(w) are functions of only Cii(w), Cyx(w) and x(w)( a
parameter vector, e.g. water and solute permeabilities). This problem
is transformed to a system of nonlinear equations using the trapezoidal
rule. We can denote the system of nonlinear eqution as

p(x.y) =0,

where x € R'® and y € R®%. The direct problem is: Given X, determine
y from

min ||¢(x, y)].
xX

And the inverse problem is: Given y, determine x from

(12) min [l¢(x,y)|l, 0 <x < b.

See [10,11] for additional detail.
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In order to test methods R1 and R2 for (12), as in [10,11], we used
the model with parameters xm and x! given in [14]. Let us denote the
y’s that correspond to xm and x!, respectively, by ym and y! which
can be obtained from solving the direct problem. We use these values
to provide initial values of y for the inverse problem. The intermediate
values obtained from ym and y! are taken as inputs in (2) by

(13) y=yl+8(ym-—yl).

We expect to have xm as a solution of the inverse problem for ym
obtained from # = 1 in (13) and x! for y! from 6 = 0. Therefore, in the
computional tests, we initially vary 6 from 0 to 1 and then check whether
we can find a solution for other values of §. We -ould get a solution for
6 0 to 2 as given in Table 1.

We have computed solutions using methods R1 and R2. In R1 and
R2, we took

The term v?||Lx]||Z in (10) is included to control the smoothness [5] of
the solution x. The regularization parameter 4 controls the weight given
to ||Lx||3 relative to ||JX — z||2. The parameter ~ in (10) was chosen by
using Generalized Cross Validation technique. It is very popular and suc-
cessfully incorporated in many regularization methods such as Tikhonov
Regularization [12] and Truncated Singular Vaiue Decomposition [4].

The GCV functional is
Gy = 7% =3l + 7] x|
V=TI - J(JTT +42LTL) -TJT)2

In algorithm 2 and 3, we compute the G(v) for various values of v and
choose v that gives the smallest value of (10).

All computations were performed on Sun Sparc-20. The initial guess
for x was given as xI. Without using the GCV functional, the conver-
gence was much slower and sometimes failed. We used R1 because R1
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has been the most successful method so far solving the problem men-
tioned above. We used 500 as the maximum number of iterations for
R1 and R2. In the experiments, both R1 and R2 do not provide better
solutions after 500 iterations. We obtained smaller values of || F|| for the
various values of y by using R2. The values of + for each 6 are given
in Table 1. The time difference of Algorithm 2 and Algorithm 3 is
from step 6. R1 takes less time in each iteration than R2. However,
R2 always converges to the values near ||F|| shown in Table 1 earlier in
iterations, say, after 5 iterations than R1. That is, R2 converges faster
than Rl in ||F||. Moreover, R2 gives more accurate solutions as shown
in Table 1. Hence, we can conclude that R2 shows better performance
to find a solution than RI.
Table 1. R1 vs. R2

L o] R1 | R2 I
Iter. L F ¥ Iter. I F ¥

0.10 ) 500 | 4.88851234-04 | 4.0363-08 || 500 | 9.93059090-05 | 4.0395-09
0.25 || 500 | 7.75893815-04 | 3.9897-08 || 500 | 1.19343469-04 | 3.9919-09
0.50 [i 500 | 1.14674364-03 | 3.8983-08 || 500 | 1.60958269-04 | 3.9005-09
0.75 || 500 | 1.48632481-03 | 3.8658-08 || 500 | 2.07426879-04 | 3.8687-09
1.00 || 500 | 1.84542734-03 | 3.8787-08 || 500 | 2.56120387-04 | 3.8807-08
1.50 || 500 | 2.42974140-03 | 3.9110-08 || 500 | 3.36237531-04 | 3.9120-09
2.00 |j 500 | 3.29750461-03 | 3.9430-08 || 500 | 4.58714961-04 | 3.9436-09
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