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MULTI-PARAMETER TIKHONOV REGULARIZATION

PROBLEM WITH MULTIPLE RIGHT HAND SIDES

SeYoung Oh* and SunJoo Kwon**

Abstract. This study shows that image deblurring problems can
be transformed into the multi-parameter Tikhonov type with multi-
ple right hand sides. Also, this paper proposes the extension of the
global generalized cross validation to obtain an appropriate choice
of the regularization parameters for this problem. The experimen-
tal results of using the preconditioned Gl-CGLS algorithm were
analyzed.

1. Introduction

A linear ill-posed system with s multiple right hand sides occurring
in the image deblurring problem can be modeled as

(1.1) B = HX + E ,

where B ∈ RM×s is a matrix that represents the blurred and noisy
image, H ∈ RM×N (M ≥ N), a large ill-conditioned blur matrix, and
E ∈ RM×s, a matrix that models additive random noise. Our goal is to
compute an approximation of the matrix X ∈ RN×s which represents
the original image.

Since the measurement noises and round-off errors always exists,
methods for constructing a stable approximation of (1.1) should be de-
veloped to restrain the noise effects. Regularization methods can pro-
duce an approximation with parameters to control the ill-posed degree
of problem (1.1). The classical Tikhonov regularization method uses
a single constraint and hence the general-form Tikhonov regularization
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problem with multiple right hand sides naturally has a single regular-
ization parameter:

(1.2) min
X
{‖HX −B‖2F + λ2 ‖LX‖2F },

where λ is a positive regularization parameter which governs the trade-
off between the fit to the observation data and the smoothness of the
restoration and the L is a regularization matrix which provides the a
priori information ([7, 8]). The effectiveness of regularization meth-
ods depends strongly on the reliability of the estimated regularization
parameter. As the single-parameter regularization uses one penalty, a
regularized solution is too smooth to preserve certain features of the
original solution in some case. Thus, concerns of the multi-parameter
regularization method using multiple constraints have been increasing.
The multi-parameter Tikhonov regularization method adds multiple dif-
ferent penalties to exhibit multi-scale features of the solution.

When s = 1(single right hand side), the multi-parameter regular-
ization method has been researched in several papers. One discusses a
multi-parameter regularization method as the solution for over-determined
and ill-conditioned linear systems [1]. Another study found the optimal
regularization parameter by minimizing the average of the errors be-
tween the filtered solutions and the true data in the multi-parameter
Tikhonov problem ([3]). A damped Morozov discrepancy principle for
choosing regularization parameters was presented for the multi-parameter
regularization method ([10]). The superiority of the multi-parameter
regularization over single-parameter regularization has been shown in
([2, 6, 5]).

This research aims at applying multi-parameter concept to the regu-
larization problem (1.2) with multiple right hand sides and extending the
global GCV function for determining optimal regularization parameters.
Moreover, we update the preconditioned global conjugate gradient linear
least squares(Gl-CGLS) method in [8] to simulate the multi-parameter
Tikhonov regularization problem with multiple right hand sides.

This article is organized as follows. A brief review of the multi-
parameter regularization method with single right hand side is summa-
rized in Section 2. In Section 3, we introduce an appropriate extension
of global generalized cross validation to decide regularization parameters
and Gl-CGLS method for solving image deblurring problems which is the
multi-parameter regularization method with multiple right hand sides.
Lastly section 4 contains numerical experiments and final remarks.
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2. Review of the multi-parameter Tikhonov problem in s = 1

The simplest and the most well known regularization method is Tikhonov’s
method with single right hand side which solves the following regularized
least-squares problem:

(2.1) min
x

(‖Hx− b‖22 + λ2 ‖Lx‖22),

where λ > 0 is called the regularization parameter. Tikhonov’s method
can be extended by using multiple constraints

(2.2) min
x

(‖Hx− b‖22 +
J∑
j=1

λ2j ‖Ljx‖
2
2),

where J denotes the number of constraints and λ1, . . . , λJ are the cor-
responding regularization parameters.

Using the normal equations for (2.2)

(HTH +
J∑
j=1

λ2jL
T
j Lj)x = HT b,

the regularization solution is written by xλ = (HTH+
∑J

j=1 λ
2
jL

T
j Lj)

−1HT b.
Under certain assumption on the boundary conditions, H and Lj are

simultaneously diagonalizable as

H = QCQ∗ and Lj = QSjQ
∗ j = 1, . . . , J,

where Q is an orthogonal (or unitary) matrix.
The multi-parameter Tikhonov solution can be written as a filtered

solution :

xλ = Q|C|2(|C|2 +
J∑
j=1

λ2j |Sj |2)−1C−1Q∗b

= QΦC−1Q∗b

= H†λb,

(2.3)

where Φ is a diagonal matrix with the diagonal elements as the filter
factors φi, i = 1, . . . , N, which are given by

φi =
|ci|2

|ci|2 +
∑J

j=1 λ
2
j |si,j |2

with ci and si,j being the ith diagonal elements of matrices C and Sj
respectively.
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In this case, the GCV method can provide a vector of regularization
parameters λ = [λ1, . . . , λJ ] by minimizing the GCV function,

(2.4) G(λ) =

∥∥∥(HH†λ − I)b
∥∥∥2
2

[trace(I −HH†λ)]2
.

Using the decomposition of (2.3), the GCV function can be written as

(2.5) G(λ) =

N∑
i=1

((1− φi)[Q∗b]i)2(
N∑
i=1

1− φi
)2 .

3. Multi-parameter Tikhonov problem with multiple right
hand sides

Before focusing on the multi-parameter Tikhonov problem with mul-
tiple right hand sides, we refer to a single regularization parameter case
of Tikhonov problem with multiple right hand sides([9]).

In [9], the image restoration problem with a single regularization
parameter is written as

(3.1) min
X
{‖HX −B‖2F + λ2 ‖X‖2F }.

Considering the reflective boundary conditions, H can be diagonal-
ized by the orthogonal two-dimensional discrete cosine transform matrix
C,

(3.2) H = CTΛHC, (ΛH = diag(η1, η2, . . . , ηN )).

Then the GCV function to decide a single regularization parameter λ in
(3.1) could be changed to the formula (3.3).

Lemma 3.1. [9] If {ηi}i=1,...,N represents the spectrum of H, the
global GCV function Gglobal(λ) is

(3.3) Gglobal(λ) =

s∑
j=1

N∑
i=1

(
1

η2i+λ
2 [CBj ]i

)2
(

N∑
i=1

1
η2i+λ

2

)2 ,

where Bj is the j-th column of B.
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A regularization parameter λgGCV is a solution the constrained opti-
mization problem

min
λ

Gglobal(λ) subject to η1 ≤ λ ≤ ηN ,(3.4)

where η1 is the smallest eigenvalue of H and ηN is the largest eigenvalue
of H.

The multi-parameter Tikhonov regularization finds a regularization
solution as the minimizer of the function;

(3.5) J (X;λ1, . . . , λJ) = ‖HX −B‖2F +
J∑
j=1

λ2j ‖LjX‖
2
F ,

where multiple regularization parameter λ = [λ1, . . . , λJ ] and multiple
regularization matrices Lj ∈ Rpj×n are incorporated.

The matrix Xλ minimizing J (X;λ1, . . . , λJ) for given [λ1, . . . , λJ ], is
the solution of the system

(3.6) (HTH +
J∑
j=1

λ2jL
T
j Lj)X = HTB.

Definition 3.2. The global GCV function with respect to a vector
of regularization parameters λ1, . . . , λJ is defined by

Gglobal(λ1, . . . , λJ)

=
‖HXλ −B‖2F

[trace(I −H(HTH +
∑J

j=1 λ
2
jL

T
j Lj)

−1HT )]2
.

(3.7)

Under the reflective boundary conditions, Lj can be also written
as a sum of BTTB(block Toeplitz with Toeplitz blocks), BTHB(block
Toeplitz with Hankel blocks), BHTB(block Hankel with Toeplitz block),
and BHHB(block Hankel with Hankel blocks) matrices. Thus Lj is di-
agonalizable

(3.8) Lj = CTSjC j = 1, . . . , J,

where Sj = diag(s1,j , s2,j , . . . , sN,j).

Using (3.2) and (3.8), the regularized solution Xλ of the system (3.6)
can be written as

Xλ = CT (ΛH
2 +

J∑
j=1

λ2jS
2
j )−1ΛH

TCB.(3.9)
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Lemma 3.3. From a unitary spectral decomposition of H and Lj , the
GCV function Gglobal(λ1, . . . , λJ) in (3.7) implies

(3.10) Gglobal(λ1, . . . , λJ) =

s∑
j=1

N∑
i=1

((φi − 1)[CBj ]i)2(
N∑
i=1

1− φi
)2 .

where φi = |ηi|2

|ηi|2+
∑J
j=1 λ

2
j |si,j |2

and Bk is the k-th column of B.

Proof. The residual matrix HXλ −B from (3.9) yields

HXλ −B = C(ΛH(Λ2
H +

J∑
j=1

λ2S2
j )−1ΛH − I)CTB.

Th Frobenius norm of the above squared equals

‖HXλ −B‖2F =

s∑
k=1

N∑
i=1

((
η2i

η2i +
∑J

j=1 λ
2
j |si,j |2

− 1

)
[CBk]i

)2

.

Also the trace part of the denominator of (3.7) can be represented as

trace(I −H(HTH +

J∑
j=1

λ2jL
T
j Lj)

−1HT )

=
N∑
i=1

(
1− η2i

η2i +
∑J

j=1 λ
2
j |si,j |2

)
.

Thus substitution of two expressions above into the global GCV function
(3.7) allows (3.10).

To find regularization parameters [λ1, . . . , λJ ] by minimizing the global
GCV function (3.10), we solve the following constrained optimization
problem with the bounded constraints for [λ1, . . . , λJ ] :

min
λ1,...,λJ

Gglobal(λ1, . . . , λJ)

subject to η1 ≤ λj ≤ ηN , for j = 1, . . . , J.
(3.11)

For the remainder of this section, we are going to develop an algo-
rithm related to the preconditioned GL-CGLS for the multi-parameter
Tikhonov problem with the global GCV.

The minimizer of the function (3.5) implies that the best fit in the
least squares minimizes the sum of squared residuals;
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min
X

∥∥∥∥( H
Lλ

)
X −

(
B
O

)∥∥∥∥
F

,(3.12)

where

Lλ =

 λ1L1
...

λJLJ


and its normal equation is

(3.13) (HTH + Lλ
TLλ)X = HTB.

The global conjugate gradient linear least squares(Gl-CGLS) method
as an iterative regularization method was designed for solving large
sparse systems (3.13) of equations with multiple right hand sides. Let

X0 denote the initial, and define R0 =

(
B
O

)
−
(

H
Lλ

)
X0, P0 = S0 =(

H
Lλ

)T
R0, and γ0 = (S0, S0)F . Then the Gl-CGLS iterations take

the following form for k = 0, 1, ...

1. Qk =

(
H
Lλ

)
Pk, αk = γk/(Qk, Qk)F ,

2. Xk+1 = Xk + αkPk, Rk+1 = Rk − αkQk,

3. Sk+1 =

(
H
Lλ

)T
Rk+1, γk+1 = (Sk+1, Sk+1)F ,

4. βk = γk+1/γk, Pk+1 = Sk+1 + βkPk,

When Ω−T is a preconditioning matrix and Y = ΩX, the normal
equations for the preconditioned problem of (3.13) becomes

(3.14) Ω−T
(
(HTH + Lλ

TLλ)Ω−1Y −HTB
)

= O.

Here, the matrix

(
H
Lλ

)
Ω−1 is well conditioned. The next algorithm

is designed to solve the multi-parameter Tikhonov problem with the
extended global GCV.

Algorithm 1. Preconditioned Gl-CGLS for the multi-parameter Tikhonov prob-
lem with the global GCV

1. Determine the minimizer λ1, . . . , λJ for the constrained minimization problem:

min
λ1,...,λJ

Gglobal(λ1, . . . , λJ)

subject to η1 ≤ λj ≤ ηN , for j = 1, . . . , J

2. Set Lλ =
(
λ1L1 . . . λJLJ

)T
.

3. Solve Ω−T (HTH + Lλ
TLλ)X = Ω−THTB using preconditioned Gl-CGLS:
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i. R0 =

(
B
O

)
−

(
H
Lλ

)
X0, P0 = S0 = Ω−T

(
H
Lλ

)T
R0, γ0 = (S0, S0)F ,

ii. For k = 0, 1, ... until convergence do

(i) Tk = Ω−1Pk Qk =

(
H
Lλ

)
Tk, αk = γk/(Qk, Qk)F ,

(ii) Xk+1 = Xk + αkTk, Rk+1 = Rk − αkQk,

(iii) Sk+1 = Ω−T
(

H
Lλ

)T
Rk+1, γk+1 = (Sk+1, Sk+1)F ,

(iv) βk = γk+1/γk, Pk+1 = Sk+1 + βkPk.

It is natural to precondition the Tikhonov problem (3.13) with the
following preconditioner

M = (HTH + Lλ
TLλ)−1

= CT (Λ2
H +

J∑
j=1

λ2jSj
2)−1C

(3.15)

From its definition, M is real and symmetric and if we choose Ω as the
square root of M;

Ω = CT (Λ2
H +

J∑
j=1

λ2jSj
2)1/2C,

then it follows that Ω is also real and symmetric.

4. Numerical experiments

This section deals with the effectiveness of the multi-parameter reg-
ularization. All computations were done by Matlab environment.

Our eight test images are 512-by-512, and these images are divided
into the collection of 4 smaller block images of 256-by-256 and 16 block
images of 128-by-128 respectively.

For simple simulation, we concentrate on the case of two-parameter
regularization method by considering minimizing the function

(4.1) J (X;λ1, λ2) = ‖HX −B‖2F + λ21 ‖L1X‖2F + λ22 ‖L2X‖2F ,
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where L1 is an identity matrix and L2 ([4]) represents simple expressions
in terms of Kronecker products

L2 = In ⊗D2 +D2 ⊗ Im, D2 =


−2 1 0 0 1
1 −2 1 0 0

0
. . .

. . .
. . .

0 0 1 −2 1
1 0 0 1 −2

 .

Note that L2 could also be chosen as In ⊗D2 or D2 ⊗ Im instead of the
above.

Table 1. Comparisons of the relative accuracy and
PSNR between single- and two-parameter regularization.

s Test image L1 PSNR L1 and L2 PSNR

4 I 0.063950 34.466259 0.027258 41.873253
II 0.051149 29.838596 0.027258 39.284432
III 0.200348 25.285330 0.136308 28.630619
IV 0.137789 21.470479 0.079226 26.277440
V 0.152878 17.838260 0.123324 19.704181
VI 0.051910 37.991887 0.020442 46.086606
VII 0.066862 28.874629 0.043110 32.686622
X 0.043107 31.849449 0.033856 33.947774

16 I 0.063956 28.444850 0.020713 38.237612
II 0.050994 23.844364 0.016558 33.614668
III 0.200891 19.241215 0.133396 22.797584
IV 0.137807 15.448726 0.081275 20.035009
V 0.152931 11.814671 0.131362 13.135137
VI 0.051207 32.089699 0.016277 42.044590
VII 0.104142 19.005148 0.042208 26.849728
X 0.047328 25.017416 0.032303 28.334994

In order to get the local minimizer [λ1, λ2] of Gglobal(λ1, λ2), we can
use fmincon which finds a constrained minimum of a function of several
variables. The stopping criteria of the preconditioned Gl-CGLS method
is either current residual satisfies the condition ‖Rk‖F / ‖R0‖F ≤ tol,(
tol = 10−2) or the maximum number of iterations is set to 500.

To measure how well the true image has been restored, we investigate

the relative accuracy
∥∥∥X∗ − X̂∥∥∥

F
/‖X∗‖F , when X∗ is the original image

and X̂ is an approximated solution, and the peak-to-signal ratio(PSNR)

defined as 10 log10

(
2552

1
mn

∑
i,j(x

∗
i,j−x̂i,j)2

)
, where x∗i,j and x̂i,j denote the
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pixel value of the original and restored image respectively. Typical values
for PSNR in lossy image are between 30 and 50 dB. The higher PSNR
generally represents the reconstruction images to be of higher quality.

In our test, the single-parameter regularization problem is setting
L1 = I and λ2 = 0 in the problem (4.1). The local minimizer λ1 of
the single-parameter function Gglobal(λ1) can be obtained by using the
matlab function fminbnd, a method based on the golden section search
and the parabolic interpolation([9]).

Table 1 presents the performance results of the preconditioned Gl-
LSQR method with single- and two-parameter regularization problem.
To look at the data distribution of the relative accuracy, boxplots are
in Figure 1. The box represents 50% of the data from 25th to 75th
percentile. The horizontal line within the box correspond to the median.
Whisker lines correspond to extreme data points.

S(s=4) M(s=4) S(s=16) M(s=16)
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Figure 1. Boxplots for the relative accuracy in S(single-
) and M(multi-)parameter Tikhonov regularization when
s = 4 and s = 16.

In s = 4, the mean value for relative accuracy is 0.0960 for single-
parameter and 0.0613 for multi-parameter. In s = 16, the mean value
for relative accuracy is 0.1012 for single-parameter and 0.0593 for multi-
parameter. Mean value of the relative accuracy for two-parameter is
lower than that of single-parameter. However the two-parameter brings
more meaningful relative accuracy compared to the single-parameter.

For s = 16, the degraded and reconstructed image for the moon
image(I) by the preconditioned Gl-CGLS with the extended global GCV
are given in Figure 2. The reconstruction error is 0.020713 and PSNR
is 38.237612. The values of regularization parameters are determined as



Multi-parameter Tikhonov regularization problem 515

(b) Blurred & noisy (c) Restored by GL-CGLS

Figure 2. (b) Gaussian blurred and noisy image and
(c) Reconstructed image using two-parameter Tikhonov
regularization method when s = 16.

λ1 ≈ 0.0122 and λ2 ≈ 0.0015. On the other hand, in the case of single-
parameter regularization problem, the relative accuracy is 0.063957 and
PSNR 28.44850. Hence, we can make the relative accuracy decrease and
PSNR increase by using two-parameter regularization problem. Figure
3 shows the corresponding residual norm decreasing stably.

Note that an extension to more than two-parameter regularization is
possible.

iteration number i
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Figure 3. The logarithm graph of residual norm ||Rk||.

This study is about the multi-parameter Tikhonov regularization
problem with multiple right hand sides. First, we applied the multi-
parameter technique to the F -norm based Tikhonov regularization prob-
lem with multiple right hand sides. Second, we extended the global GCV
function to choose multiple regularization parameters. The results il-
lustrate that multi-parameter performs better than single-parameter in
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relative accuracy and PSNR. Consequently we can get the best approxi-
mation of the true image by means of the two multi-parameter technique.
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