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ON THREE SPECTRAL REGULARIZATION METHODS FOR
A BACKWARD HEAT CONDUCTION PROBLEM

XIANG-TUAN XI10NG, CHU-LI Fu, AND ZHI QIAN

ABSTRACT. We introduce three spectral regularization methods for solv-
ing a backward heat conduction problem (BHCP). For the three spectral
regularization methods, we give the stability error estimates with opti-
mal order under an a-priori and an a-posteriori regularization parameter
choice rule. Numerical results show that our theoretical results are effec-
tive.

1. Introduction

The backward heat conduction problem (BHCP) is also referred to as fi-
nal boundary value problem. In general no solution which satisfies the heat
conduction equation with final data and the boundary conditions exists. Even
if a solution exists, it will not be continuously dependent on the final data.
The BHCP is a typical example of an ill-posed problem which is unstable by
numerical methods and requires special regularization methods. In the context
of approximation method for this problem, many approaches have been inves-
tigated. Such authors as R. Lattes and J. L. Lions [9], R. E. Showalter [14], K.
A. Ames [1], K. Miller [13] have approximated the BHCP by quasi-reversibility
methods. In [17], T. Schréter and U. Tautenhahn established an optimal error
estimate for a special BHCP. N. S. Mera and M. Jourhmane used many nu-
merical methods with regularization techniques to approximate the problem in
[7, 11, 12], etc. A mollification method has been studied by D. N. Hao in [5].
S. M. Kirkup and M. Wadsworth used an operator-splitting method in [8].

Spectral methods for solving sideways heat equation have been studied by
U. Tautenhahn in [15], however he don’t give the a-posterior parameter choice
rule, which is more important in practice.
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In this paper, we will use the spectral methods to study a backward heat
equation under an a-priori and a-posteriori parameter choice rules. This is a
remedy for the reference [15]. Of course, our a-posteriori parameter choice rule
can be applied to the sideways heat equation.

The paper is organized as follows. In the next section, we review some spec-
tral methods in the general regularization theory and an a-posteriori parameter
choice rule is given; in Section 3, a spectral regularization method together with
an error estimate is provided for solving the BHCP ; in Section 4, a numerical
example is tested to verify the validity of the parameter choice rules.

2. An a-posteriori parameter choice rule

Now let us review some results on general regularization theory.
Consider an ill-posed operator equation (3, 6, 10, 16]
(2.1) Azt =y,

where A : X — Y is a bounded linear operator between Hilbert spaces X and
Y.
Most regularization operators can be written in the form,

(2.2) R, =g, (AT A)A*
with some function g, satisfying

_ 1
(2.3) Iim ga(X) = -

Then for the regularization solution with unperturbed data, we have z, := Ry
and z¥ — 24 = ro(A*A)z! with ro(X) =1 — Aga (). For example,
Spectral method 1.

Spectral method 2.

la A> a,
w0 ={ X 2%
o)’
\ 0, A>a,
ra(d) = 1-4/2, A<a
Spectral method 3 (TSVD method).
L A>a
_ P = Gy
ga(/\)—{ 0, A<a.
0, A>aq,
ra(A) = { 1, A<a
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In general, the exact solution z' € X is required to satisfy a so-called source
condition, otherwise the convergence of the regularization method approximat-
ing the problem can be arbitrarily slow. For most ill-posed problems, the source
condition is chosen as

(2.4) gt = [p(A* A w, |l < E,
i.e., zf belongs to the source set
(2.5) My i = {[p(A*A))*w, we X and |lw]| < E},

where () satisfies some properties: )1‘im ©(A) = 0 and () is strict mono-
-0
tonically increasing.
The following similar results on the a-posteriori regularization parameter
can be found in [6].

Choice Rule. Choose a = a(d,y?) such that the following conditions are
satisfied with C' > 1:

(2.6) llAzg, — || < G,
(2.7 a<l,
(2.8) a<1=3ad €la,2a] s.t.||Axd, —y°|| > C6.

For most regularization methods a parameter « satisfying (2.6)-(2.8) exists and
can be found by a simple algorithm.

Lemma 2.1. Assume |ly — y®|| < 6, (2.3) and {roa(AN)] < C, with C, =1
hold and that § > 0. If (a,) is some sequence of positive numbers converging
monotonically decreasing to 0 with ag = 1 and o, /ant1 < 2, then the algorithm

n:=0
while ||Aw‘;n -0 > Cé
n:=n+1

terminates after number N of steps and yields a number a = an satisfying
(26)-(28) with o' = anN_1 ZfN > 0.

Proposition 2.1. Assume that (2.3), |ga(N\)| < Cy/a, |ra(N)| < 1 hold for
some constant C,, suppose that a = «(d,y?) is chosen by (2.6)-(2.8) and =z
satisfies source condition (2.4). Then the error estimate

(2.9) llz8, — 2t|| < Ep~ ((C + 1)62/E?)(1 + o(1)) for & — 0.
holds, where o(A) = A*(dIn$)™", where s > 0,7 > 0,d > 0, p~'()) =
AT [ In 1751 (1 4 0(1)) for A = 0.

It is easy to verify the fact that the above three spectral methods satisfy all
the assumptions in Proposition 2.1. As for the a-priori parameter choice, we
will prove the error estimate for one of the spectral methods.
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3. Error estimate on an a-priori parameter choice rule for a BHCP
In this paper, we consider a special BHCP [5]:

(2, 1) = Uge(z, t) TER0<E<T,

u(z,T) = g(x), z€eR

We want to obtain the temperature distribution u(x, ¢) for 0 < t < T. Since
the data g(-) are based on (physical) observations and are not known with
complete accuracy, we assume that g(-) and g°(-) satisfy

3.2) llg() = g° (Il < 6,

where g(-) and g°(-) belong to L2(R), ¢°(-) denotes the measured data and &
denotes the noise level.

The problem (3.1) has a uniqueness solution according to [4]. In order to
use Fourier transform technique, we define the Fourier transform of function
f(z) (z € R) as the following:

(33) JO= 2= [ et cer

We consider the problem (3.1) in L2-space with respect to the variable z.
Then taking Fourier transform with respect to x, the problem (3.1) can be
reformulated in frequency space as follows:

(¢, t) = (i6)*a(¢, 1),
(3.4) W T)=4(8), (€Rr
The solution to equation (3.4) is given by
(3:5) a(E, 1) = & T 4(¢).
From (3.5), we can easily see that
(3.6) al€, 0) = "¢ §(9)-

By the similar method in [15], (3.1) can be formulated as an operator equation
in frequency

(3.7) A)a(€, 1) = §(¢) with A(t) = FA()F™,

where F: L*(R) — L*(R) is the Fourier operator. Similarly the multiplication
operator A(t) is given by

(38) A(t) = e,

and A*(t)A(t) = e~2°(T-1),
As usual, assume that there exists an a-priori condition for our problem
(3.1):

(3.9) llu(- O)ll, < E,

(3.1)
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where ||o]|, = ||(1+52)P/?9(s)|| 12(r) is the norm of Sobolev space H? = {v(t) €
L%(R) : ||v|l, < 0o}, then this condition can be reformulated into an equivalent
condition u(z,t) € M, g (see (2.5)) with ¢ given by

¢ 1 1
3.10 = ATt [———In-]?, 0< T,p>0.
(310) )= AT [y 0< < T, p20

Now we use the three spectral methods for solving the backward heat equa-
tion
Spectral method 1.

662(T_t)g6(£)7 6*262(T_t) Z a?
%e—£2(T—t)§5(£)7 e~ 26%(T-1) < ¢

(3.11) o (&) = {

Spectral method 2.

ET-0gg), e 2T-D>q
12 i (6)=4{ ° gs) 2y =0
(3 ) U‘a(g) { %g&(&), e~ 2% (T—t) < a.

Spectral method 3.

egz(T—t)gé(O7 e—262(T—1) > a,
0, e 2 (T-t) < ¢

(3.13) U (8) = {

Because the three spectral methods are very similar, we only give the prop-
erties of the first spectral method.

Theorem 3.1. Supposed that u(z, t) is exact solution with exact date g and
that v (z, t) is approzimate solution by spectral method 1 with noisy data g°.
If we have an a-priori bound |lu(-, 0)||, < E and the data functions satisfy
llg — 9°)l < 6, and if we choose a = [In EJpU-t/T)(£)20-t/T)  then we can
obtain the following error estimate:

llu(-,t) = ug ()l

(3.14) R E
< 2+T%HYTE"T[In —g]_f(l‘t/T)(l +0o(1)) foré — 0.
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Proof. First define two sets A = {£e=%’(T=t) > o} and B = {¢]e~26*(T-1) <
a}, due to Parseval relation and the formulas (3.5), (3.11), we have
(3.15)

() = ug (- Ol = lla, ) — ad ¢, o)

1/2
a4 1 _e2(r_yy- 2(T—t)
B (/ €705 - g°)Pdg + / e TG - T “gPds)
A B

1/2
2Py A 1 _ A 6.
( / €T “(g—g‘*)r“d&) + ( / | ge — 1T t)g|2d€>
A B
1/2
sup [e€” (1) ( / [ 95)I2d€)
4 A
1/2
+ ( / | Le-era-ngs _ 16—52(T—t)g,2d§>
87 87
B

1/2
1 20 . 20T _4) n
N (/be E(T—t)5 _ (T t)g|2d§)
B

2 1
suplet (T79|.§ 4+ sup|—e € T-1)| . 5
A B «

1/2
4 ( / |(le—52(T—t) _eaz(T—t))mzdg)
(87
B

= sup|ef T-D|. 6 + suplle‘fz(T‘t)| ¥
A B «

1/2

IN

IN

IA

1/2
* (/ (e €T — B0y 1 1 )k (1 4 52)%e—52Ta<-,0)12d5>
B

IA

1
sup [e€" (T~ . § + sup |Ze=€T-0). 5
A B «

1/2
—€2(2T—t) _ ,,,—£% i
+sup Jg| 7P| T | (B/ @ +52>m(-,0)|2d5)

26 2
—= +sup|¢|Pe ¢ IE
S U5 tew 1€l

26 1, 7%
< — —Y2(T-?) -ty .
<7 + [(ln(a) T )} aXT-DE
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If the o in (3.15) is chosen by a = [In £]p(1=t/T)(£)2(0-/T) then

20 _ rp-vyry Eioraoym
Ja = 20 E [In 5] 2 ,
L -5 -
[(ln(é)z‘(T—t) )] = {% In ?] (14 0(1)) for 6 — 0,

QT E = 6/TE/TIn %%%.
So, the error estimate (3.14) holds. O

Remark 3.1. When ¢ = 0, the error estimate (3.14) becomes

(-1 8) — w.(, )| < (2 + T3)Eln %]—% (1+0(1)) for & — 0.
This solve the problem of convergence at ¢ = 0.

Remark 3.2. For the other two spectral method, we can establish the error
estimates similar to (3.14). Here we omit them.

As for the a-posteriori parameter choice case, Proposition 2.1 guarantees the
convergence of the method, we can give the algorithm according to the formulas
(2.6)-(2.8) and Lemma 2.1.

n:=0, ag=1;

Ay = ! .
"+l
1/2
. 6_252(T—t) 5 )
while / (——— -V ©Pds| >Co
£1>E
with fr(r?a)x = [ln[(—)m]] :
an
n:=mn-+1;

terminates after number N of steps and yields a number a = ay satisfying
(2.6)-(2.8) with &' = ay_q if N > 0.

We will do a numerical experiment for the two parameter choice rules in the
next section.

4. Numerical experiment

The aim of this section is to verify the theoretical results. It is easy to see

that the function
(4.1) u(z,t) = L

e~ THa
144t




1288 XIANG-TUAN XIONG, CHU-LI FU, AND ZHI QIAN

is the unique solution of the initial problem

Ut = Uga, -TGR,t>0,
4.2 :
(42) { u(z,0) = e, z e€R
Hence, u(z,t) given by (4.1) is also the solution of the following backward heat
equation for 0 <t < 1:
{utzum, zeR 0<t«1,

22

(43) 9(z) = u(z,1) = %e‘T, zeR

By simple calculation, we can get ||u(-,0)|[p = 1.11 and [lu(-,0)|l1 /2 = 1.30.
So we take £ = 1.11 for p = 0 and E = 1.30 for p = 1/2, respectively.

_5¢7

We also can get the Fourier transform §(¢) = %e 1 of g(¢t) and we take

§5(€) = Le=*F 5. Thus, if § = 0.006, then [|g(-) — ¢°()|| = 0.0045. In the
following numerical experiment, we fix the & = 0.006.

We do the numerical experiment in the intervals z € [—20,20] and ¢ € [0,1].
This is reasonable in that the initial data at the points # = —20, 20 in (4.3)
can be considered to be 0 in the computation by noting that the final value
u(z,1) — 0 in (4.3) when 2 — +o0.

Fig. 1 and Fig. 3 are based on the a-posteriori parameter choice rule in
Lemma 2.1.

Fig. 2 and Fig. 4 are based on the a-priori parameter choice rule in Theorem
3.1

The numerical results are presented as follows.

05 06

04 05

03

u(x.0.5)
u(x,0.5)

02

01 0.2

0.1
-20 -15 -10 -5 0 5 10 15 20 ~20 -15 ~10 -5 [ 5 10 15 20

FIGURE 1. FIGURE 2.
C=12,a=1/10 p=0,a =0.045

5. Conclusions

In this paper, we discussed three spectral regularization methods for the one-
dimensional backward heat conduction problem. We can see that the spectral
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u(x,0

02 -
20 15 10 -5 [) 5 0 15 20 20 45 10 5 o 5 10 15 20

FIGURE 3. FIGURE 4.
C=11,a=1/283 p=1/2,0=4.8%x10"°

methods stabilize the ill-posed problem by cutting off the high frequency. The

thi

rd method just is the Fourier method in [2]. Numerical results show that

these method are effective with appropriately chosen regularization parameters.
The methods can be easily generalized to two-dimensional case.
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