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STABILITY ANALYSIS OF REGULARIZED VISCOUS

VORTEX SHEETS

Sung-Ik Sohn

Abstract. A vortex sheet is susceptible to the Kelvin-Helmhotz insta-
bility, which leads to a singularity at finite time. The vortex blob model
provided a regularization for the motion of vortex sheets in an inviscid
fluid. In this paper, we consider the blob model for viscous vortex sheets
and present a linear stability analysis for regularized sheets. We show
that the diffusing viscous vortex sheet is unstable to small perturbations,
regardless of the regularization, but the viscous sheet in the sharp limit
becomes stable, when the regularization is applied. Both the regulariza-

tion parameter and viscosity damp the growth rate of the sharp viscous
vortex sheet for large wavenumbers, but the regularization parameter
gives more significant effects than viscosity.

1. Introduction

A vortex sheet is an interface in an incompressible fluid across which the
tangential velocity is discontinuous [3]. It serves as a simple model for a shear
layer at a high Reynolds number. In a free shear flow, strong roll-ups evolve
on the vortex sheet, which results in a small-scale structure and mixing of the
fluid [10, 12, 18]. A variety of flows are described by a vortex sheet; for example,
Rayleigh-Taylor instability, water waves and Hele-Shaw flows [4, 7].

The motion of vortex sheets suffers from the Kelvin-Helmholtz instability [3].
The small perturbation of a flat sheet proportional to exp(λt + ikΓ), in an
inviscid fluid, has the dispersion relation

(1) λ(k) =
k

2
,

where k represents the wavenumber of the solution, t is time and Γ is the
circulation parameter. This relation indicates that short-wave disturbances
grow spuriously and cause instability in the evolution of the sheet. As a result,
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the sheet develops a singularity at finite time [15]. Numerical computations
break down near the singularity time.

Moore [15] first identified the singularity in a two-dimensional vortex sheet
using asymptotic analysis. The curvature of the sheet was found to diverge
at a finite time. Numerical studies by Krasny [11] and Shelley [19] support
the asymptotic analysis. The singularity formation in axisymmetric, spherical
and planar three-dimensional vortex sheets has been further studied by several
authors [8, 16, 17]. Beyond the singularity time, the existence of weak solutions
for the two-dimensional Euler equations for single-signed vortex sheet initial
data was proved by Delort [5] and Majda [14]. The nature and complexity of
the solution of the vortex sheet is indicated in the theory by Wu [24], which
relates the vortex sheet to a chord-arc curve.

The singularity could be suppressed by giving a numerical smoothing or
physical effects such as finite thickness [2] and surface tension [1, 9, 20]. Bound-
ary integral methods, using a blob regularization, have been popularly used
for the computation of the vortex sheet [12, 22]. In the blob-regularization,
the singular integral kernel in the model is replaced by a convolution with a
smoothing function, which damps the growth of high wavenumbers. Krasny [12]
proposed a simple regularization model for the vortex sheet and demonstrated
the long-time evolution of the interface. The Krasny model has been used for
computations of various vortex sheet problems. Differences and similarities of
vortex blob models are thoroughly studied in Sohn [22]. The convergence of
blob models to a weak solution of the Euler equation for a vortex sheet in the
zero limit of the regularization parameter was established by Liu and Xin [13].

Although extensive researches have been carried out for vortex sheets, most
of the previous works focus on the model in an inviscid fluid. A fundamental
weak point of the vortex sheet model is that it is only for the inviscid dynam-
ics. Tryggvasson et al. [23] showed that the small-scale solution of the viscous
evolution of a vortex sheet using Navier-Stokes simulations was significantly
different from the result of the inviscid vortex sheet. For more realistic descrip-
tion of the flow, it is required to include viscous effects in the model, but only
a few studied a model for a viscous vortex sheet.

Dhanak [6] presented a model for a diffusing viscous vortex sheet and showed
that the diffusing vortex sheet under small perturbations is linearly unstable.
However, many issues on the motion of the diffusing vortex sheet are still un-
explored: whether the singularity forms on the interface, the structure of the
singularity is similar to that of the inviscid sheet, if it forms, and a regular-
ization stabilizes the motion of the sheet or not. Recently, the author [21]
examines the limit of zero thickness of the viscous vortex sheet and finds that
the curvature singularity also develops in the sharp viscous vortex sheet, but
its appearance is delayed than the inviscid sheet. Since the singularity does not
disappear only by giving viscosity to the sheet, a regularization is applied to
the model, in order to calculate the evolution of the sheet past the singularity
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time. The long-time evolution of the regularized sharp viscous vortex sheet is
demonstrated in [21].

In this paper, we consider the blob-regularization of the diffusing viscous
vortex sheet. The main purpose of this paper is to investigate the stability of
the regularization model of the diffusing viscous vortex sheet, as well as the
sharp viscous vortex sheet. We will show that the diffusing viscous vortex sheet
is unstable under small perturbations, regardless of the regularization, but the
sharp viscous sheet becomes stable, when the regularization is applied.

In Section 2, we describe the regularized viscous vortex sheet model. We
present a linear stability analysis for the diffusing and the sharp viscous vortex
sheets in Section 3, and results of the stability curve for the two vortex sheets
in Section 4. Section 5 gives conclusions.

2. Viscous vortex sheet model

The vortex sheet is represented by z(Γ, t) = x(Γ, t)+ iy(Γ, t), −∞ < Γ < ∞,
in complex notation, where Γ is the circulation parameter along the sheet. The
motion of the inviscid vortex sheet is described by the Birkhoff-Rott equa-
tion [3],

(2)
∂z∗

∂t
(Γ, t) =

1

2πi
P.V.

∫ ∞

−∞

dΓ′

z(Γ, t)− z(Γ′, t)
,

where P.V. represents the principal value integral, and the asterisk denotes the
complex conjugate.

Dhanak [6] considered the motion of the centroid curve of a vortex layer,
assuming that the instantaneous vorticity distribution ω(s, n, t) in the layer
decays exponentially as

(3) ω(s, n, t) ∼ exp

(
−

n

H(s, t)

)
as n → ±∞,

where s is the arc-length along the curve and n is the distance in the normal
direction of the curve. In (3), H(s, t) gives a measure of the thickness of the
vortex layer. The layer is further assumed as thin, satisfying uniformly in s,

(4)

∣∣∣∣
H(s, t)

ρ(s, t)

∣∣∣∣ ≤ ǫ ≪ 1,

where ρ(s, t) is the radius of curvature. Under these assumptions, the centroid
curve of the vortex layer is regarded as the diffusing vortex sheet in a viscous
fluid. The evolution equation of the diffusing viscous vortex sheet is given by

∂z∗(Γ, t)

∂t
=

1

2πi
P.V.

∫ ∞

−∞

dΓ′

z(Γ, t)− z(Γ′, t)
− i

∂

∂Γ

(
τγ3 ∂z

∗

∂Γ

)

− νγ
∂γ

∂Γ

∂z∗

∂Γ
+O(ǫ2),

(5)
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where ν denotes the kinematic viscosity. The vortex sheet strength γ is defined
as

(6) γ(Γ, t) =
∂Γ

∂s
(s, t),

and τ is defined as

(7) τ =
1

γ2

∫ ∞

−∞
∆(γ −∆)dn, ∆(s, n, t) =

∫ n

−∞
ω(s, n′, t)dn′.

Here, to O(ǫ2), ∆(s, n, t) is the negative of the jump in the tangential velocity
at s between position n and n = −∞. Thus, τ can be written as the momentum
thickness of the layer,

τ =

∫ ∞

−∞

(U2 − u)(u− U1)

(U1 − U2)2
dn,

where U1 and U2 are the free-stream tangential velocities at y = ±∞ respec-
tively, and u is the local component of velocity tangential to the interface.

We may consider the viscous vortex sheet of zero thickness. If we assume
that all the vorticity is concentrated in the sheet, ω in (7) is written as the delta
function, i.e., ω(s, n, t) = γ(s, t)δ(n). Then, ∆(s, n, t) becomes the Heaviside
step function with the factor γ(s, t), which in turn gives τ = 0. Therefore, in
the limit of τ → 0, (5) reduces to

(8)
∂z∗(Γ, t)

∂t
=

1

2πi
P.V.

∫ ∞

−∞

dΓ′

z(Γ, t)− z(Γ′, t)
− νγ

∂γ

∂Γ

∂z∗

∂Γ
.

This equation describes the evolution of the sharp viscous vortex sheet. If
viscosity is set to zero, we recover the Birkhoff-Rott equation.

The vortex blob model is to replace the singular integral kernel by a regu-
larized one. Following Krasny [12], we apply the δ-parameter to the evolution
equations. The regularization equation for the diffusing viscous vortex sheet is
given by

∂z∗(Γ, t)

∂t
=

1

2πi

∫ ∞

−∞

z∗(Γ, t)− z∗(Γ′, t)

|z(Γ, t)− z(Γ′, t)|2 + δ2
dΓ′

− i
∂

∂Γ

(
τγ3 ∂z

∗

∂Γ

)
− νγ

∂γ

∂Γ

∂z∗

∂Γ
.

(9)

Similarly, the regularization equation for the sharp viscous vortex sheet is

(10)
∂z∗(Γ, t)

∂t
=

1

2πi

∫ ∞

−∞

z∗(Γ, t)− z∗(Γ′, t)

|z(Γ, t)− z(Γ′, t)|2 + δ2
dΓ′ − νγ

∂γ

∂Γ

∂z∗

∂Γ
.

Equations (9) and (10) are the main evolution equations we consider in this
paper.



STABILITY ANALYSIS OF REGULARIZED VISCOUS VORTEX SHEETS 847

3. Linear stability analysis

In this section, we present the linear stability analysis of the regularization
models for the viscous vortex sheets. The linear stability analysis of the un-
regularized viscous vortex sheets is given in [6, 21]. The dispersion relation for
the diffusing viscous vortex sheet is

(11) λ0
d =

1

2

[
−νk2 +

√
ν2k4 + k2 (1− 2τk) (1− 4τk)

]
.

The superscript 0 represents the unregularization (δ = 0). In the limit of τ → 0
in (11), the sharp vortex sheet has the growth rate

(12) λ0
s =

1

2

(
−νk2 +

√
ν2k4 + k2

)
.

Note that λ0
d grows with k2 as k → ∞, which is even more unstable than the

growth rate of the inviscid vortex sheet (1). The growth rate λ0
s converges

to 1/(4ν) as k → ∞. This implies that the amplitudes of high wavenumbers
are bounded, not growing indefinitely. This bound is large for the fluid of
small viscosity, and thus it would yield growths of short-wave disturbances in
numerical calculations, causing instability in the evolution of the sheet.

We now examine the linear stability of the regularized viscous vortex sheets.
The flat vortex sheet x(Γ, t) = Γ, y(Γ, t) = 0 is an equilibrium solution of (5).
We consider the solution of small perturbations for the equilibrium under the
linear approximation of the model. The governing equation for the diffusing
vortex sheet is written as

∂x

∂t
= −

1

2π

∫ ∞

−∞

y − y′

r2 + δ2
dΓ′ −

∂

∂Γ

(
τγ3 ∂y

∂Γ

)
− νγ

∂γ

∂Γ

∂x

∂Γ
,(13a)

∂y

∂t
=

1

2π

∫ ∞

−∞

x− x′

r2 + δ2
dΓ′ +

∂

∂Γ

(
τγ3 ∂x

∂Γ

)
− νγ

∂γ

∂Γ

∂y

∂Γ
,(13b)

where r =
√
(x− x′)2 + (y − y′)2. Let us write the solution with small pertur-

bations as

(14) x(Γ, t) = Γ + x̃(Γ, t), y(Γ, t) = ỹ(Γ, t).

We assume the momentum thickness τ to be constant. The expression (14) is
substituted into (13), and the linear terms in x̃ and ỹ are retained. The square
and cubic terms of vortex sheet strength behaves as

γ3 = 1− 3
∂x̃

∂Γ
, γ2 = 1− 2

∂x̃

∂Γ
.

Then, we obtain the linearized equations

∂x̃

∂t
= −

1

2π

∫ ∞

−∞

ỹ − ỹ′

(Γ− Γ′)2 + δ2
dΓ′ − τ

∂2ỹ

∂Γ2
+ ν

∂2x̃

∂Γ2
,(15a)

∂ỹ

∂t
=

1

2π

∫ ∞

−∞
(x̃ − x̃′)

[
1

(Γ− Γ′)2 + δ2
− 2

(Γ− Γ′)2

((Γ− Γ′)2 + δ2)2

]
dΓ′(15b)
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− 2τ
∂2x̃

∂Γ2
.

We look for solutions of the form x̃ = X(t)eλt+ikΓ and ỹ = Y (t)eλt+ikΓ. Sub-
stitution into (15) gives

Xλ = −
1

2π

Y

δ

∫ ∞

−∞

1− eikδu

u2 + 1
du+ τk2Y − νk2X,

Y λ =
1

2π

X

δ

∫ ∞

−∞

[
1− eikδu

u2 + 1
− 2

(1− eikδu)u2

(u2 + 1)2

]
du+ 2τk2X.

The integrals can be evaluated by using the residue theorem:

I1 =

∫ ∞

−∞

1− eikδu

u2 + 1
du = π(1− e−kδ),(17a)

I2 =

∫ ∞

−∞

(1− eikδu)u2

(u2 + 1)2
du =

1

2
π[1 + (−1 + kδ)e−kδ].(17b)

Then, the growth rate satisfies the equation,

(18) λ2 + νk2λ−
1

4
k

[
1

δ
(1 − e−kδ)− 2τk2

]
(e−kδ − 4τk) = 0.

The regularized diffusing vortex sheet has the solution of the growth rate

(19) λd =
1

2

[
−νk2 +

√

ν2k4 + k

(
1

δ
(1− e−kδ)− 2τk2

)
(e−kδ − 4τk)

]
.

For τ > 0, the growth rate increases asymptotically with

(20) λd ∼
1

2
(−ν +

√
ν2 + 8τ2)k2 as k → ∞.

Spurious short-wave disturbances thus would be amplified in numerical compu-
tations. Surprisingly, the regularization gives no influence on the asymptotic
behavior of λd for large k. We conclude that the diffusing vortex sheet is
unstable, regardless of the regularization.

In the limit of τ → 0 in (19), the regularized sharp vortex sheet has the
growth rate

(21) λs =
1

2

[
−νk2 +

√
ν2k4 +

1

δ
k(1− e−kδ)e−kδ

]
.

We find that the growth rate λs decreases as viscosity ν is increased. It also
decreases as the parameter δ is increased. The growth rate decays to zero with

(22) λs ∼
1

4δνk
e−kδ as k → ∞.

This indicates the stability of the sheet motion. Furthermore, it shows different
effects of ν and δ on the growth rate. The increase of ν gives an algebraic
decrease of the growth rate, whereas the increase of δ yields an exponential
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decrease. This explains the fact that varying the δ-parameter produces more
significant effects on the evolution of the sheet than varying ν does, which
was demonstrated in the numerical results for various Reynolds numbers and
δ-values in [21].

Taking ν = 0 in (21), we have the growth rate of the regularized inviscid
vortex sheet,

(23) λs(ν = 0) =
1

2

√
1

δ
k(1− e−kδ)e−kδ.

The growth rate of the regularized inviscid vortex sheet decays to zero with

(24) λs ∼
1

2
√
δ

√
ke−

1

2
kδ as k → ∞.

4. Stability curves

We present the results of the stability curves for the regularized viscous
vortex sheets. Figure 1 shows the growth rate of the regularized diffusing vortex
sheet for several values of τ . The values of viscosity and the regularization
parameter are set to ν = 0.001 and δ = 0.2. The growth rate of the sharp
viscous vortex sheet (τ = 0) is also given for comparison. In Fig. 1, the growth
rates with τ > 0 increase indefinitely for large k, and the curve of the larger
value of τ increases faster, as indicated in (20). Therefore, the sheet would be
more unstable for a larger diffusion width. In Fig. 1, there are some stable
modes in the intermediate ranges of k whose values of λ are imaginary.

Figure 2 shows the growth rate of the sharp viscous vortex sheet for several
values of δ. Viscosity is set to ν = 0.001. The growth rate of the unregularized
vortex sheet is also given. (Remind that λ0

s has a constant limit for large k.)
In Fig. 2, the growth rates of the regularized vortex sheet are damped for large
wavenumbers. The growth rate of the sheet has the smaller maximum and
decays faster for the larger value of δ. Figure 3 plots the growth rate of the
sharp viscous vortex sheet for varying ν. The regularization parameter is set
to δ = 0.2. The growth rate of the sheet has smaller maximum and decays
faster for larger viscosity. The results of Figs. 2 and 3 clearly shows that the
increase of the regularization parameter δ gives larger damping effects on the
growth rate than the increase of ν does.

5. Conclusions

We have presented the linear stability analysis for the regularized viscous
vortex sheets. The blob model provides sufficient regularization for the mo-
tion of the sharp viscous vortex sheet, but it does not work to damp the fast
growth of high modes in the diffusing vortex sheet. It is found that both the
δ-parameter and viscosity damp the growth rate of large wavenumbers in the
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Figure 1. Growth rate of the diffusing vortex sheet for several
values of τ . The values of viscosity and the regularization
parameter are set to ν = 0.001 and δ = 0.2. The growth rate
of the sharp viscous vortex sheet (τ = 0) is also given for
comparison.
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Figure 2. Growth rate of the sharp viscous vortex sheet for
several values of δ. Viscosity is set to ν = 0.001. The growth
rate of the unregularized vortex sheet (δ = 0) is also given.
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Figure 3. Growth rate of the sharp viscous vortex sheet for
varying ν. The regularization parameter is set to δ = 0.2.

sharp viscous vortex sheet, but the δ-parameter gives more significant effects
than viscosity.

Our study provides better understanding on the modelling of the Kelvin-
Helmholtz instability and highlights the fundamental difference between the
vortex sheet model and the shear layer model. The key difference of the two
models is that the vortex sheet model is based on the approach allowing dis-
continuity in the tangential component of the velocity on the interface, even
when viscous diffusion is considered, while in the shear layer model, a contin-
uous transition layer of physical variables is given to the interface. Our result
indicates that numerical computations may become unstable as long as the in-
terface has discontinuity on the tangential velocity, and explains why numerical
simulations using Navier-Stokes equations usually fail when the diffusion layer
is very sharp. We conclude that the Kelvin-Helmholtz instability of velocity
discontinuity is intrinsically unstable, and inclusion of viscous diffusion would
not prevent the growth of disturbances of high wavenumbers.
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