• 제목/요약/키워드: Regularization Parameter

검색결과 94건 처리시간 0.025초

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제22권4호
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

각분해X-선광전자분광법 데이터 분석을 위한 regularization 방법의 응용 (Application of Regularization Method to Angle-resolved XPS Data)

  • 노철언
    • 한국진공학회지
    • /
    • 제5권2호
    • /
    • pp.99-106
    • /
    • 1996
  • Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonhstrates its excellent utility for the complex depth profile system . It includes the stable restoration of depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.

  • PDF

신경 회로망 학습을 통한 모델 선택의 자동화 (Automation of Model Selection through Neural Networks Learning)

  • 류재흥
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.313-316
    • /
    • 2004
  • Model selection is the process that sets up the regularization parameter in the support vector machine or regularization network by using the external methods such as general cross validation or L-curve criterion. This paper suggests that the regularization parameter can be obtained simultaneously within the learning process of neural networks without resort to separate selection methods. In this paper, extended kernel method is introduced. The relationship between regularization parameter and the bias term in the extended kernel is established. Experimental results show the effectiveness of the new model selection method.

  • PDF

영상 복원을 위한 통합 베이즈 티코노프 정규화 방법 (A Unified Bayesian Tikhonov Regularization Method for Image Restoration)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.1129-1134
    • /
    • 2016
  • 본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 사전 정보가 없으면 티코노프(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수가 필요하다. 본 논문에서는 티코노프 정규화에 대한 통합된 베이즈 해석을 소개하고 영상 복원 문제에 적용한다. 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사용한 정규화 모수를 구하는 공식을 제시한다. 실험결과는 제안하는 방법의 효능을 보여준다.

인체 흉부 영상 복원을 위한 행렬 적응 조정 방법의 적용 (Application of Matrix Adaptive Regularization Method for Human Thorax Image Reconstruction)

  • 전민호;김경연
    • 전기전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.33-40
    • /
    • 2015
  • 전기 임피던스 단층촬영법(EIT)에서 역문제는 매우 높은 비정치성이므로 이것을 완화시키기 위해서 사전정보가 사용되고 EIT 역문제를 푸는 과정에서 만족스러운 복원성능을 갖기 위해 조정 기법은 적용된다. 반복적 Gauss-Newton 방법은 정확성과 빠른 수렴속도로 인해서 일반적으로 역문제를 푸는데 사용되지만 항상 좋은 성능을 내는 것은 아니며 조정 인자 선택에 따라 성능이 좌지우지된다. 비록 L-곡선과 같이 조정 인자를 결정하는데 이용할 수 있는 여러 가지 방법들이 존재하지만 이러한 방법들이 모든 경우에 적용할 수 있는 것은 아니다. 게다가 조정 인자는 스칼라이고 반복 연산동안 변하지 않는다. 그러므로 이 논문에서는 복원 성능을 향상시키기 위해서 조정 인자를 결정해주는 새로운 방법을 사용하였다. 각각의 반복 연산과정에서 도전율의 norm을 구하고 이것을 대각 행렬형태인 조정 인자를 구하는데 사용한다. 제안한 방법을 인체 흉부 영상 복원에 적용하였고, 기존의 방법들과 복원 성능을 비교하였다. 모의실험 결과, 기존의 방법들과 비교해서 개선된 성능을 확인할 수 있었다.

통합 베이즈 총변이 정규화 방법과 영상복원에 대한 응용 (An Unified Bayesian Total Variation Regularization Method and Application to Image Restoration)

  • 류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.41-48
    • /
    • 2022
  • 본 논문은 통합 베이즈 티코노프 정규화 방법을 총변이 정규화에 대한 해법으로 제시한다. 통합된 방법은 총변이 항을 가중된 티코노프 정규화 항으로 변형하여 정규화 모수를 구하는 공식을 제시한다. 정규화 모수를 구하고 이를 바탕으로 새로운 가중인수를 구하는 것을 복원된 영상이 수렴하기까지 반복한다. 실험결과는 영상 복원 문제에 대하여 제안하는 방법의 효능을 보여준다.

Effective Determination of Optimal Regularization Parameter in Rational Polynomial Coefficients Derivation

  • Youn, Junhee;Hong, Changhee;Kim, TaeHoon;Kim, Gihong
    • 한국측량학회지
    • /
    • 제31권6_2호
    • /
    • pp.577-583
    • /
    • 2013
  • Recently, massive archives of ground information imagery from new sensors have become available. To establish a functional relationship between the image and the ground space, sensor models are required. The rational functional model (RFM), which is used as an alternative to the rigorous sensor model, is an attractive option owing to its generality and simplicity. To determine the rational polynomial coefficients (RPC) in RFM, however, we encounter the problem of obtaining a stable solution. The design matrix for solutions is usually ill-conditioned in the experiments. To solve this unstable solution problem, regularization techniques are generally used. In this paper, we describe the effective determination of the optimal regularization parameter in the regularization technique during RPC derivation. A brief mathematical background of RFM is presented, followed by numerical approaches for effective determination of the optimal regularization parameter using the Euler Method. Experiments are performed assuming that a tilted aerial image is taken with a known rigorous sensor. To show the effectiveness, calculation time and RMSE between L-curve method and proposed method is compared.

Regularization Parameter Selection for Total Variation Model Based on Local Spectral Response

  • Zheng, Yuhui;Ma, Kai;Yu, Qiqiong;Zhang, Jianwei;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1168-1182
    • /
    • 2017
  • In the past decades, various image regularization methods have been introduced. Among them, total variation model has drawn much attention for the reason of its low computational complexity and well-understood mathematical behavior. However, regularization parameter estimation of total variation model is still an open problem. To deal with this problem, a novel adaptive regularization parameter selection scheme is proposed in this paper, by means of using the local spectral response, which has the capability of locally selecting the regularization parameters in a content-aware way and therefore adaptively adjusting the weights between the two terms of the total variation model. Experiment results on simulated and real noisy image show the good performance of our proposed method, in visual improvement and peak signal to noise ratio value.

A Simulation Study on Regularization Method for Generating Non-Destructive Depth Profiles from Angle-Resolved XPS Data

  • Ro, Chul-Un
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.707-714
    • /
    • 1995
  • Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonstrates its excellent utility for the complex depth profile system. It includes the stable restoration of the depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.

  • PDF

이완변수를 고려한 영상의 정칙화 반복 복원 (Regularized Iterative Image Restoration with Relaxation Parameter)

  • 홍성용;이태홍
    • 한국통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.91-99
    • /
    • 1994
  • 잡음이 섞인 흐려진 영상의 복원에서 구속 조건으로서 이완 변수와 정칙화 변수를 적용한 정칙화 반복 복원 방법을 제시 하였다. Blemond등에 의해 제시된 종전의 정칙화 반복 복원 방법은 정칙화 연산자로서 리플라시안 여파기를 사용하였으나 정칙화 변수와 이완 변수를 고정된 상수로 처리하는 반면, 본 논문에서는 (I.H)를 정칙화 연산자로서 사용하였고, 영상의 사전 정보를 고려하여 각 화소마다 적응성있게 가변되는 두 종류의 구속조건을 정칙화 반복 복원 방법에 적용하였다. 실험 결과를 통하여 제시한 방법이 윤곽부분에서는 피묻현상이 감소하였으며, 평면부분에서는 잡음의 억제가 현저하였음을 알 수 있었다.

  • PDF