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요 약

본 논문은 통합 베이즈 티코노프 정규화 방법을 총변이 정규화에 대한 해법으로 제시한다. 통합된 방법은 

총변이 항을 가중된 티코노프 정규화 항으로 변형하여 정규화 모수를 구하는 공식을 제시한다. 정규화 모수를 

구하고 이를 바탕으로 새로운 가중인수를 구하는 것을 복원된 영상이 수렴하기까지 반복한다. 실험결과는 영

상 복원 문제에 대하여 제안하는 방법의 효능을 보여준다.

ABSTRACT

This paper presents the unified Bayesian Tikhonov regularization method as a solution to total variation 

regularization. The integrated method presents a formula for obtaining the regularization parameter by transforming the 

total variation term into a weighted Tikhonov regularization term. It repeats until the reconstructed image converges to 

obtain a regularization parameter and a new weighting factor based on it. The experimental results show the 

effectiveness of the proposed method for the image restoration problem.
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Ⅰ. Introduction

Image restoration is an example of inversion 

problems in the ill-posed systems[1,2]. Image 

restoration is the process to recover an original 

image from distorted one by using an appropriate 

degradation model[3-5]. In the linear degradation 

model, we assume that a given input image   is 

blurred by a Point Spread Function(: PSF)   and 

further distorted by a Gaussian noise . This can 

be written in the form
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  ⋆ (1)

where symbol⋆denotes convolution.

Figure 1 shows the degradation process of the 

satellite image and the restoration result by Wiener 

filtering[6].

Fig. 1 Satellite image data.

In the Fourier transform, we have

  . (2)

In the inverse filtering, we have

 





. (3)

This formula shows that if   is zero or very 

small, the second term   is amplified. 

Thus we need the regularization as a remedy 

solving ill-posed inverse problem.

Total Variation(:TV) regularization is well known 

for removing noise while recovering edge 

information[7,8].

In this paper, the unified Bayesian Tikhonov 

regularization is formulated for TV regularization 

problem and applied to the image restoration 

problems. In section II, TV regularization is 

reformulated as weighted Tikhonov regularization. 

In section III, the unified Bayesian method for 

weighted Tikhonov regularization is developed in 

the frequency domain. In section IV, a new method 

for TV regularization is suggested. In section V, 

experimental results show the effectiveness of the 

proposed method followed by the conclusion and 

reference sections[9-13].

Ⅱ. Total Variation Regularization from 
Tikhonov Regularization

In the Tikhonov regularization 

for an ill-posed problem    , 

we seek a limiting vector   to 

fit data  in least squares sense 

with  norm penalty term for 

large normed solution in the cost 

function as

  

∥∥ ∥ ∥ . (4)

Here,   and   are the block circulant matrices of 

a PSF   and a smoothing operator   respectively.

Both   and   matrices have the dimension, MN 

by MN. That is, m = n = MN with image 

dimension M by N.   is the Tikhonov 

regularization parameter.

TV Regularization is defined with   norm 

penalty term as following[7,8]

  

∥  ∥ ∥∥ . (5)

Here D is the gradient operator. In the isotropic 

TV we have the magnitude of gradient in   norm. 

as

∥∥∥∥∥ ∥∥∥. (6)
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Here,   and   are gradient operators along 

axises. In the anisotropic TV we get the magnitude 

of gradient in   norm. as 

∥∥∥∥∥∥. (7)

Regularization term in the q-norm can be 

expressed in Euclidean norm as following.



∥∥  
∥∥  

∥∥
 

∥

∥

 

∥∥

. (8)

Thus we can setup the TV regularization as the 

weighted Tikhonov regularization with q=1.

   
 

     . (9)


  




 . (10)

Here, epsilon is the small positive constant 

preventing division by zero.

Ⅲ. Regularization Parameter Selection in 
the Frequency Domain

In the frequency domain, block circulant matrices 

  and   are diagonalized. We denote them   and 

  respectively. Let   and   be the column vectors 

of the Fourier transform of   and   respectively.

Regularized estimation vector is defined as

  
                    (11)

 

where superscript  denotes the 

Hermitian or conjugate transpose. 

Wight matrix V is defined as 

following.

 
  

  


  




  


 












  




 . (12)

Here,   and   are the diagonal elements of the 

matrices   and   respectively.   is the element of 

column vector   stacking columns of 2D Fourier 

transform of the degraded image  .

Square residual is defined as

∥∥ 





 










. (13)

 Smoothing term is defined as


  






 

 



 

 



. (14)

Then we obtain a fixed point 

iteration method for the 

regularization parameter in 

the weighted  norm 

system. The basic form of 

unified bayesian(UB) 

method[4] as

 


∥∥
∥∥

, (15)

and the extended form of UB method[5] as
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 


∥∥
∥∥

   ±±

, (16)

with the number of effective 

parameters  

  





 









. (17)

Ⅳ. Iteratively Reweighted L2 Norm 
Algorithm

We can start with identity weight matrix and 

select the regularization parameter. Then solve for 

equation (9) and (10) respectively until the 

appropriated termination condition is satisfied. We 

can designate the iteratively reweighted l2 norm (: 

IRL2N) algorithm for the TV regularization as in 

the Table 1. Termination condition can be relative 

error on either    or 
  against the limit value.

Initialize     , 
 , k = 0

1. Save    and 
  for checking out

2. Get   using equation (15).

3. Get    using equation (9).

4. Get 
  using equation (10.)

5. Check for termination condition. if not

k=k+1 and go to step 1.

Table 1. IRL2N Algorithm for the TV regularization

IRL2N algorithm can perform in the frequency 

domain. using equation (11) and (12).

Ⅴ. Experimental Results

We report the experiments with the algorithm 

proposed in the previous section. The algorithm has 

applied four methods of parameter selection: unified 

bayesian(:UB), Extended UB(:EUB), relative error(: 

EUB_RE) and GCV respectively[4,5,9]. Results of 

TV smoother are depicted in the figures 2 and 3. 

First row depicts   norm and the second row 

shows   norm regularization results. Isotropic TV 

shows the better results than anisotropic TV. The 

EUB_RE shows the benchmark results and the 

EUB has the best performance under the new 

benchmark.

Image restoration performance is measured by 

the figure-of-merit functions such as relative error 

(RE), signal to noise ratio (SNR), peak SNR 

(PSNR) and improvement of SNR (ISNR)[10-13]. 

Tables 2-5 show the image restoration performance 

with remarking value of regularization parameter .

Fig. 2 Restored images with isotropic TV smoother.
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Measure

Method
RE↓ SNR↑ PSNR ISNR

Remark



UB 0.3434 9.284 22.91 6.243 5.61e-4

UBw 0.3411 9.342 22.97 6.302 1.83e-8

EUB 0.3433 9.286 22.91 6.245 5.77e-4

EUBw 0.3409 9.348 22.98 6.307 1.73e-8

EUBRE 0.3431 9.293 22.92 6.252 6.94e-4

EUBREw 0.3408 9.351 22.98 6.310 1.58e-8

GCV 0.3433 9.285 22.91 6.245 8.45e-4

GCVw 0.3425 9.308 22.94 6.267 2.23e-8

Wiener 0.3243 9.781 23.41 6.740 N/A

Table 2. Performance Results using isotropic TV 
smoother

Measure

Method
RE↓ SNR↑ PSNR ISNR

Remark



UB 0.3454 9.233 22.86 6.193 3.30e-4

UBw 0.3423 9.312 22.94 6.272 1.36e-8

EUB 0.3454 9.235 22.86 6.194 3.34e-4

EUBw 0.3421 9.318 22.95 6.277 1.26e-8

EUBRE 0.3448 9.248 22.88 6.207 4.31e-4

EUBREw 0.3420 9.320 22.95 6.280 1.19e-8

GCV 0.3450 9.244 22.87 6.204 4.90e-4

GCVw 0.3435 9.282 22.91 6.241 1.62e-8

Wiener 0.3243 9.781 23.41 6.740 N/A

Table 3. Performance Results using anisotropic TV 
smoother

Measure

Method
RE↓ SNR↑ PSNR ISNR

Remark 

  

UB 0.5694 4.891 18.52 1.850 1.72e-5

UBw 0.3521 9.066 22.69 6.025 3.89e-9

EUB 0.3496 9.129 22.76 6.088 1.59e-4

EUBw 0.3455 9.230 22.86 6.189 1.20e-8

EUBRE 0.3492 9.139 22.77 6.098 1.84e-4

EUBREw 0.3408 9.351 22.98 6.310 7.22e-9

GCV 0.3575 8.935 22.56 5.895 9.80e-5

GCVw 0.3408 9.349 22.98 6.309 7.91e-9

Wiener 0.3243 9.781 23.41 6.740 N/A

Table 4. Performance Results with identity 
smoothing operator

Measure

Method
RE↓ SNR↑ PSNR ISNR

Remark



UB 0.3489 9.146 22.77 6.106 7.91e-3

UBw 0.3499 9.121 22.75 6.080 9.92e-8

EUB 0.3433 9.287 22.92 6.247 2.54e-3

EUBw 0.3422 9.314 22.94 6.273 4.39e-8

EUBRE 0.3433 9.287 22.92 6.247 2.47e-3

EUBREw 0.3417 9.326 22.95 6.285 3.64e-8

GCV 0.3449 9.247 22.87 6.206 4.45e-3

GCVw 0.3447 9.250 22.88 6.210 6.31e-8

Wiener 0.3243 9.781 23.41 6.740 N/A

Table 5. Performance Results using Laplacian 
smoother

Fig. 3 Restored images with anisotropic TV smoother. Fig. 4 Restored images with identity smoother.
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Fig. 5 Restored images with Laplacian smoother.

 Suffix w denotes the result of IRL2N algorithm. 

Tikhonov regularization results are listed without 

suffix w. In IRL2N algorithm information is 

accumulated in the weight matrix and the 

regularization parameter is much smaller than the 

initial one. Thus constant of regularization 

parameter without adjustment during the iteration 

can prevent the process from getting the optimal 

state[7,8]. Tables 2-5 show that TV regularization 

using the IRL2N algorithm is generally more 

effective compared to the Tikhonov regularization.

Ⅵ. Conclusions

In this paper, the unified Bayesian Tikhonov 

regularization and the extended one are adopted in 

the IRL2N algorithm and applied to the image 

restoration problem. All procedures are successfully 

adapted to the weighted regularization method. Next 

plan is to develop the IRL2N method from the 

optimality condition providing adaption and 

continuation of parameters without separating 

shrinkage formular.
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