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An Unified Bayesian Total Variation Regularization Method
and Application to Image Restoration
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ABSTRACT

This paper presents the unified Bayesian Tikhonov regularization method as a solution to total variation
regularization. The integrated method presents a formula for obtaining the regularization parameter by transforming the
total variation term into a weighted Tikhonov regularization term. It repeats until the reconstructed image converges to
obtain a regularization parameter and a new weighting factor based on it. The experimental results show the
effectiveness of the proposed method for the image restoration problem.
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| . Introduction degradation model[3-5]. In the linear degradation
model, we assume that a given input image f is
blurred by a Point Spread Function(: PSF) h and
further distorted by a Gaussian noise 7. This can
be written in the form

Image restoration is an example of inversion
problems in the ill-posed systems[1,2]. Image
restoration is the process to recover an original
image from distorted one by using an appropriate
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g(z,y) = h(z,y) * flz,y) +n(z,y) (1)

where symbol * denotes convolution.
Figure 1 shows the degradation process of the
satellite image and the restoration result by Wiener

filtering[6].
P AREE

Original PSF Blurred
Noise Obsérved Wiener
Fig. 1 Satellite image data.
In the Fourier transform, we have
Glu,v) = H(u,w) Flu,v) + Nu,v). 2)

In the inverse filtering, we have

3

This formula shows that if H(u,v) is zero or very
small, the second term N(u,v)/H(u,v) is amplified.
Thus we need the regularization as a remedy
solving ill-posed inverse problem.

Total Variation(:TV) regularization is well known
for removing noise while recovering edge
information[7,8].

In this paper, the unified Bayesian Tikhonov
regularization is formulated for TV regularization
problem and applied to the image restoration

problems. In section II, TV regularization is
reformulated as weighted Tikhonov regularization.

In section III, the unified Bayesian method for
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weighted Tikhonov regularization is developed in
the frequency domain. In section IV, a new method
for TV regularization is suggested. In section V,
experimental results show the effectiveness of the
proposed method followed by the conclusion and
reference sections[9-13].

I1. Total Variation Regularization from
Tikhonov Regularization

In the Tikhonov regularization
for an ill-posed problem Hf =g,
we seek a limiting vector f , to
fit data g in least squares sense
with /2 norm penalty term for
large normed solution in the cost

function as

J(f)=%( | Hf—g 12421 Cf112), )

Here, H and C are the block circulant matrices of
a PSF h and a smoothing operator p respectively.
Both H and C matrices have the dimension, MN
by MN. That is, m = n = MN with image
dimension M by N. X is the Tikhonov
regularization parameter.

is defined with '

TV Regularization norm
penalty term as following[7,8]
J(f):%( N Hf— g2+ X1 DFII). ®)

Here D is the gradient operator. In the isotropic
TV we have the magnitude of gradient in {* norm.
as

IDfI =11 /(I D FI ) +(IDFI)2 0. 6
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Here, D, and D, are gradient operators along Wight matrix V' is defined as
axises. In the anisotropic TV we get the magnitude following.
of gradient in {* norm. as

[V,PO'= o (0) =1
I DfIl =1l _sz =1l Dyf . (7 |Cf |27,1(k‘_’_1) _ ‘571|2 ‘ti‘Q | “2
. (s, + At Plo (k)2

Regularization term in the gmnorm can be
expressed in Euclidean norm as following. o, (k+1) = (2)(|Cf|§2"1)(k+1)+n)’1. (12)

; p ,
Licrie=21cr1e2L i :
q Crit=—1¢f b Crl @ Here, s; and t, are the diagonal elements of the

I (%)1/2(0,‘)@*”/2 cf

W= o= |

I WeCf 112

Thus we can setup the TV regularization as the
weighted Tikhonov regularization with g=1.

fr=H"H+\C"WiC) 'H'yg. 9

WE = (%)Diag(((CfA)(Q*q“re)*l) . (10)

the small
preventing division by zero.

Here, epsilon is positive  constant

[ll. Regularization Parameter Selection in
the Frequency Domain

In the frequency domain, block circulant matrices
H and C are diagonalized. We denote them S and
T respectively. Let z and b be the column vectors
of the Fourier transform of f and g respectively.

Regularized estimation vector is defined as

z, = (87S+ \T"VET) ' 8% 11

where superscript A denotes the

Hermitian or conjugate transpose.

matrices & and T respectively. b; is the element of

column vector b stacking columns of 2D Fourier
transform of the degraded image g.
Square residual is defined as

ul N2t Yo,

e, 2=, = [b,.

R — (13)
i=1 (|Si‘2 + )‘|ti|2|vi|2)

Smoothing term is defined as

n Is, P 1t v,

AN

TSR SRR TTRECIV) (14)
i=1 (|57|2 +>\|t,|2 |'U,j|2)2

b,
Then we obtain a fixed point

iteration  method for the

regularization parameter in

the  weighted [ norm

system. The basic form of
unified bayesian(UB)

method[4] as

A=—1 lel” , 15)
m—y | WyCf Il 2

and the extended form of UB method[5] as
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with the number of effective

parameters -y
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IV. lteratively Reweighted L2 Norm
Algorithm

We can start with identity weight matrix and
select the regularization parameter. Then solve for
equation (9) and (10)
appropriated termination condition is satisfied. We

respectively until the

can designate the iteratively reweighted 12 norm (:
IRL2N) algorithm for the TV regularization as in
the Table 1. Termination condition can be relative

error on either f, or W2 against the limit value.

Table 1. IRL2N Algorithm for the TV regularization

=g, We=IL k=0
1. Save f, and W2 for checking out
2. Get X\ using equation (15).

Initialize f,

3. Get f, using equation (9).
4. Get W2 using equation (10.)

5. Check for termination condition. if not
k=k+1 and go to step 1.

IRL2N algorithm can perform in the frequency
domain. using equation (11) and (12).
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V. Experimental Results

We report the experiments with the algorithm
proposed in the previous section. The algorithm has
applied four methods of parameter selection: unified
bayesian(:UB), Extended UBCEUB), relative error(:
EUB_RE) and GCV respectively[4,59]. Results of
TV smoother are depicted in the figures 2 and 3.
First row depicts > norm and the second row
shows !' norm regularization results. Isotropic TV
shows the better results than anisotropic TV. The
EUB_RE
EUB has the best performance under the new

shows the benchmark results and the

benchmark.

Image restoration performance is measured by
the figure-of-merit functions such as relative error
(RE), signal to noise ratio (SNR), peak SNR
(PSNR) and improvement of SNR (ISNR)[10-13].
Tables 2-5 show the image restoration performance
with remarking value of regularization parameter A.

x| K| %%

UB EUB EUVRE GCV
UBw EUBw EUVREw GCVw

Fig. 2 Restored images with isotropic TV smoother.
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Table 2. Performance Results using isotropic TV
smoother

Table 4. Performance Results with identity
smoothing operator

Measure Remark
RE | |SNR 1 |PSNR [ISNR
Method ! f A

Remark
I RE | [SNR 1 | PSNR|ISNR | ot
Method A

UB 0.3434| 9.284 | 2291 | 6.243 | 5.61le-4

UB 105694 | 4891 | 1852 | 1.850 | 1.72e-5

UBw |03411| 9.342 | 22.97 | 6.302 | 1.83e-8

UBw ] 03521 | 9.066 | 22.69 | 6.025|3.89e-9

EUB ]0.3433] 9286 | 2291 | 6.245 | 5.77e-4

EUB ]0.3496 | 9.129 | 22.76 | 6.088 | 1.09e-4

EUBw [0.3409| 9.348 | 22.98 | 6.307 | 1.73e-8

EUBw ] 0.3455 | 9.230 | 22.86 | 6.189 | 1.20e-8

EUBRE ]0.3431| 9293 | 22.92 | 6.252 | 6.94e-4

EUBRE | 0.3492 | 9139 | 22.77 | 6.098 | 1.84e—4

EUBREw [0.3408 | 9.351 | 22.98 | 6.310 | 1.58e-8

EUBREw]| 0.3408 | 9.351 | 22.98 | 6.310 | 7.22e-9

GCV 103433 ] 9285 | 22.91 | 6.245 | 8.45e-4

GCV_ 10.3575 | 8935 | 2256 |5.895]9.80e-5

GCVw [0.3425| 9.308 | 22.94 | 6.267 | 2.23e-8

GCVw ]0.3408 | 9.349 | 22.98 |6.309 | 7.91e-9

Wiener 0.3243] 9.781 | 2341 | 6.740 | N/A

Wiener | 03243 | 9.781 | 2341 |6.740 | N/A

Table 3. Performance Results using anisotropic TV
smoother

easure Remark
RE | |SNR 1 |PSNR [ISNR
Method ! f A

UB  [0.3454| 9.233 | 22.86 | 6.193 | 3.30e-4
UBw 103423 9312 | 22.94 | 6.272 | 1.36e-8
EUB  |0.3454| 9.235 | 22.86 | 6.194 | 3.34e-4
EUBw |0.3421| 9318 | 22.95 | 6.277 | 1.26e-8
EUBRE [0.3448| 9.248 | 22.88 | 6.207 | 4.31le-4
EUBREw | 0.3420| 9.320 | 22.95 | 6.280 | 1.19e-8
GCV_ 10.3450| 9.244 | 22.87 | 6.204 | 4.90e-4

GCVw_ 10.3435] 9.282 | 22.91 | 6.241 | 1.62e-8

Wiener 10.3243]| 9.781 | 2341 [6.740 | N/A
UB EUB EUVRE GCV
UBw EUBw EUVREw GCVw

Fig. 3 Restored images with anisotropic TV smoother.

Table 5. Performance Results using Laplacian
smoother

easure . . Remark
RE | |SNR 1 |PSNR|ISNR
Method A

UB  ]0.3489] 9.146 | 22.77 | 6.106 | 791e-3
UBw  [0.3499| 9121 | 22.75 | 6.080 | 9.92e-8
EUB  |0.3433] 9.287 | 22.92 | 6.247 | 254e-3
EUBw [0.3422| 9314 | 22.94 | 6.273 | 4.39e-8
EUBRE |0.3433| 9.287 | 22.92 | 6.247 | 2.47e-3
EUBREw |0.3417| 9.326 | 22.95 | 6.285 | 3.64e-8
GCV  10.3449| 9247 | 22.87 | 6.206 | 4.45e-3

GCVw [03447] 9250 | 2288 | 6210 | 631e-8
Wiener [0.3243] 9.781 | 2341 6740 N/A
Y

Fay

UB EUB EUVRE GCV
x| x| % | %
UBw EUBw EUVREwW GCVw

Fig. 4 Restored images with identity smoother.
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X | %) %%

UB EUB EUVRE GCV
UBw EUBw EUVREw GCVw

Fig. 5 Restored images with Laplacian smoother.

Suffix w denotes the result of IRL2N algorithm.
Tikhonov regularization results are listed without
In IRL2N algorithm
accumulated in the

suffix — w. information  is
weight matrix and the
regularization parameter is much smaller than the
Thus

parameter without adjustment during the iteration

initial ~ one. constant of regularization
can prevent the process from getting the optimal
state[7,8]. Tables 2-5 show that TV regularization
IRL2N algorithm

effective compared to the Tikhonov regularization.

using the is generally more

VI. Conclusions

In this paper, the unified Bayesian Tikhonov
regularization and the extended one are adopted in
the IRL2N algorithm and applied to the image
restoration problem. All procedures are successfully
adapted to the weighted regularization method. Next
plan is to develop the IRLZN method from the
optimality adaption and

condition  providing

continuation of parameters without separating

shrinkage formular.
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