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A Unified Bayesian Tikhonov Regularization Method for Image Restoration
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ABSTRACT

This paper suggests a new method of finding regularization parameter for image restoration problems. If the prior information is not available,
separate optimization functions for Tikhonov regularization parameter are suggested in the literature such as generalized cross validation and L-curve
criterion. In this paper, unified Bayesian interpretation of Tikhonov regularization is introduced and applied to the image restoration problems. The
relationship between Tikhonov regularization parameter and Bayesian hyper-parameters is established. Update formular for the regularization parameter
using both maximum a posteriori(: MAP) and evidence frameworks is suggested. Experimental results show the effectiveness of the proposed method.

=

Bayesian Interpretation, Evidence Framework, Tikhonov Regularization, Image Restoration
Hﬂo] H}d :Lﬂ ._Lﬂ] _Orq:;_ ﬂllt” ZLng]. od}\]— ELOJ

I . Introduction further distorted by a Gaussian noise 1. This can
be written in the form

Image restoration is the process to recover an
original image from distorted one by using an  g(z,y) =h(z,y) * f(z,y) +nlzy) 1
appropriate degradation model[1]. Image restoration
iIs an example of inversion problems in the  where symbol * denotes convolution.
ill-posed systems[2,3]. In the linear degradation In the Fourier transform, we have
model, we assume that a given input image f is

blurred by a Point Spread Function(: PSF) A and  G(u,v) = H(u,v) F(u,v) + N u,v). 2)
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In the inverse filtering, we have

&)

This formula shows that if H(u,v) is zero or very
small in the high frequency region and MN(w,v) is
still not vanished in the corresponding region, the
second term N(w,v)/H(u,v) is amplified. Thus we
need a remedy solving ill-posed inverse problem.

Wiener filter requires priori information such as
power spectrums of original image and noise. If the
noise level is known a priori, Morozov's
Discrepancy Principle(: MDP) can be applied for the
determination of regularization parameter in the
constrained least squares image restoration.
Otherwise separate optimization functions such as
Generalized Cross Validation(: GCV) function and
L-curve criterion are suggested as
methods in the literature[4-7].

In this paper, unified Bayesian interpretation of

alternative

Tikhonov regularization is suggested and applied to
the image restoration problems. In section II, square
residual and smoothing term in the frequency
introduced to solve for Tikhonov
In section Il and IV,

domain are
regularization parameter.

Bayesian update of Tikhonov regularization
parameter is introduced and applied to the image
restoration problems. The relationship between

Tikhonov regularization parameter and Bayesian
hyperparameters is established. Update formular for
the regularization parameter using both Maximum
A PosterioriC MAP) and evidence frameworks is
suggested. In section V, experimental results show
the effectiveness of the proposed method followed
by the conclusion and reference sections.
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I1. Regularization Parameter Selection in
the Frequency Domain

In the Tikhonov regularization for an ill-posed
problem Hf =g, we seck a limiting vector f, to

fit data ¢ in least squares sense with penalty term
for large normed solution in the cost function as

J(f)=é( lg-HF 12X CFI?). )

Regularized estimation vector is defined as
f.=H"H+ ) \C"C) 'Hyg. 5)

Here, H and C are the block circulant matrices of
a PSF h and a smoothing operator p respectively.

usually given by the
Tikhonov

regularization parameter. g and f, are the column

Smoothing  functional

Laplacian  operator. A is  the

vectors stacking columns of a degraded image g
and a recovered image f; respectively. Both A and
C matrices have the dimension, MN by MN. That
is, m = n = MN with image dimension M by N.
In the frequency domain, block circulant matrices
H and C are diagonalized. We denote them S and
T respectively. Let z and b be the column vectors
of the Fourier transform of f and g respectively.
Regularized estimation vector is defined as

z, =(878+\T"T) "' 8", 6)

where superscript A denotes the Hermitian or
conjugate transpose.
Square residual is defined as

n )\Q‘t,“l

2 __ .2
L =X o M @

Here, s; and ¢, are the diagonal elements of the
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matrices S and T respectively. b, is the element of

column vector b stacking columns of 2D Fourier
transform of the degraded image g.
Smoothing term is defined as

I cf IIZ—iﬂ\bP ®)
g Z s P+ AP

[ll. Unified Bayesian Interpretation of
Tikhonov Regularization
MAP estimator maximizes the posterior pdf

p(flg) which can be expressed using Bayes’
law[8] as following

_ plglf) p(f)

p (flg) P (g) , 9)
. Likelihood X Prior

Posterior = Toidence (10)

Assume that both error and original image
are Gaussian random vectors, we have

_ 1 IH-gl?
p(glf) (2ol e.rp[ 27 }, an
o o
p(f)—i(%gtzof)n/?exp{ —20'%7 ] : (12)

By taking the negative log for the Bayes’
the MAP
Tikhonov regularization as

law, we have interpretation of

A=—. (13)

2
ooy

We can interpret the parameter A as a global
scalar proportionality measure analogous to the
parametric Wiener filter with setting C to the
identity matrix.

In the evidence framework[9], we have
fixed-point iteration known as the MacKay
update
o= 20E,="7, (14)
XH=2BE,=m—v (15)
or
a=v/2E, (16)
B=(m—7)/2E),. 17)

In these equations, « and [ are unknown

hyper-parameters

a=—1 = (18)

1
5
ocr o¢

E, and FE;, are regularization and cost terms

respectively
1 2

EF:§ I cfil=, (19)
1 2

E,= 5 e (20)

and v is the number of effective parameters

n /H:uz
’y—i;iﬁui"‘a% . 21)

Here, y, and v, denote singular value of H'H
and CTC respectively.

Then we combine the MAP and the evidence
frameworks into the unified Bayesian update
Tikhonov
parameter as a fixed point iteration method.

formular for the regularization

1131



JKIECS, vol. 11, no. 11, 1129-1134, 2016

E
« ¥ D
A=—= — (22)
B m—y Ey
with
N M
’y_i;lh’"')"/i‘ @
Now we have the unified Bayesian

interpretation of Tikhonov regularization.

IV. A New Image Restoration Method
using Unified Bayesian Regularization

We have the Bayesian update formular for the
Tikhonov regularization parameter in the frequency
domain using equation (7) and (8) as

2
P el - 24)
m=—y || Cfl
f} oy
2 s P+ AP
A= 7 — (25)
Z sPf o
= (I, + Alt,°)?
with
n 1 |S‘2
= . (26)
guﬁkv g Is, P 4 Alt,
Here, we see that the number of effective

parameters is equal to the sum of filter factors[10].

After calculating M wusing the fixed point
iteration, we obtain z as following
=(S7s+ T"T)"' 8" 270

where superscript A denotes the Hermitian or
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conjugate transpose.

Reshaping the column vector z into 2D matrix to
obtain ﬁ(u,v),
original image by taking inverse 2D FFT.

we finally get the estimation of

V. Experimental Results

We report the experiments with the new image
restoration method proposed in the previous two
sections. Figure 1 shows the satellite image data
from the USAF Phillips Laboratory, Laser and
Imaging Directorate, Kirtland AFB, NM[11].

We compare the unified Bayesian(: UB) method
MDP, GCV,
L-curve and Wiener filter. Results are depicted in

with the conventional techniques

the figures 2 , 3 and 4. First row shows the
data
components and the second row further processed

restored image having negative pixel
by using projection with non-negativity constraint.
Visual inspection shows that MDP and L-curve
in an over smoothed estimation with
and GCV  depicts

smoothing with identity matrix.

results

Laplacian  smoother under

Original FSF Observed

Noise

Convoluted

Fig. 1 Satellite image data.
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Fig. 2 Restored images with Wiener filter as
benchmark.
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Fig. 4 Restored images with identity smoother.

The new UB method shows comparable results
with
operator. However,

methods using  smoothing
the UB filter depicts under
smoothing with identity matrix that is more severe
compared to the GCV method.

Image restoration performance is measured by

conventional

the figure-of-merit functions such as relative error
(RE), signal to noise ratio (SNR), peak SNR
(PSNR) and improvement of SNR (ISNR)[7,12-14].

Table 1 and 2
performance with remarking value of regularization

show the image restoration

parameter M. Results of Wiener filter is included
for comparison benchmark. Here, we report only
data with
non-negativity constraint. We have the equivalent

the restored image projected

results as visual inspection on the restored images.

Table 1. Performance Results using Laplacian
smoother with Wiener filter as benchmark.

easure Remark
RE | |SNR 1 |PSNR |ISNR
Metho A
MDP 10.3803| 8397 | 22.03 | 5.356 | 8.29e-2
GCV 10.3449| 9.247 | 22.87 | 6.206 | 4.45e-3
L-curve|0.4509| 6917 | 20.55 | 3.876 | 1.00e-0
UB 0.3489| 9.146 | 22.77 | 6.106 | 7.91e-3
Wiener [0.3243| 9.781 | 2341 [6.740| N/A

Table 2. Performance Results with identity
smoothing operator.

easure RE | |SNR 1 |PSNR |ISNR Remark
Metho A
MDP |0.3648 | 8758 | 22.39 | 5.717 | 4.75e-4
GCV 103575 | 8935 | 2256 | 5.89%5 | 9.80e-5
L-curve | 0.3623 | 8818 | 22.45 | 5777 | 4.38¢-4

UB 05694 | 4891 | 1852 | 1.850 | 1.72e-5

VI. Conclusions

In this paper, unified Bayesian interpretation of
Tikhonov regularization is suggested and applied to
the image restoration problems. The relationship
between Tikhonov regularization parameter and
Bayesian hyper-parameters is established. Update
formular for the regularization parameter using both
maximum a posteriori and evidence frameworks is
suggested. Fixed point iteration can be applied for
the regularization parameter. Experimental results
show the comparable performance of the unified
Bayesian method.
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