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영상 복원을 위한 통합 베이즈 티코노프 정규화 방법

류재흥
*

A Unified Bayesian Tikhonov Regularization Method for Image Restoration

Jae-Hung Yoo*

요 약

본 논문은 영상 복원 문제에 대한 정규화 모수를 찾는 새로운 방법을 제시한다. 사전 정보가 없으면 티코노프

(Tikhonov) 정규화 모수를 선택하기 위한 일반화된 교차 검증법이나 L자형 곡선 검정 등의 별도의 최적화 함수

가 필요하다. 본 논문에서는 티코노프 정규화에 대한 통합된 베이즈 해석을 소개하고 영상 복원 문제에 적용한

다. 티코노프 정규화 모수와 베이즈 하이퍼 모수들의 관계를 정립하고 최대 사후 확률과 근거 프레임워크를 사

용한 정규화 모수를 구하는 공식을 제시한다. 실험결과는 제안하는 방법의 효능을 보여준다.

ABSTRACT

This paper suggests a new method of finding regularization parameter for image restoration problems. If the prior information is not available, 

separate optimization functions for Tikhonov regularization parameter are suggested in the literature such as generalized cross validation  and L-curve 

criterion. In this paper, unified Bayesian interpretation of  Tikhonov regularization is introduced and applied to the image restoration problems. The 

relationship between Tikhonov regularization parameter and Bayesian hyper-parameters is established. Update formular for the regularization parameter 

using both maximum a posteriori(: MAP) and evidence frameworks is suggested. Experimental results show the effectiveness of the proposed method.
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Ⅰ. Introduction

Image restoration is the process to recover an 

original image from distorted one by using an 

appropriate degradation model[1]. Image restoration 

is an example of inversion problems in the 

ill-posed systems[2,3]. In the linear degradation 

model, we assume that a given input image   is 

blurred by a Point Spread Function(: PSF)    and 

further distorted by a Gaussian noise . This can 

be written in the form

  ⋆ (1)

where symbol⋆denotes convolution.

In the Fourier transform, we have

  . (2)
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In the inverse filtering, we have

 





. (3)

This formula shows that if   is zero or very 

small in the high frequency region and   is 

still not vanished in the corresponding region, the 

second term   is amplified. Thus we 

need a remedy solving ill-posed inverse problem.

Wiener filter requires  priori information such as 

power spectrums of original image and noise. If the 

noise level is known a priori, Morozov's 

Discrepancy Principle(: MDP) can be applied for the 

determination of regularization parameter in the 

constrained least squares image restoration. 

Otherwise separate optimization functions such as 

Generalized Cross Validation(: GCV) function and 

L-curve criterion are suggested as alternative 

methods in the literature[4-7].

In this paper, unified Bayesian interpretation of  

Tikhonov regularization is suggested and applied to 

the image restoration problems. In section II, square 

residual and smoothing term in the frequency 

domain are introduced to solve for Tikhonov 

regularization parameter. In section III and IV, 

Bayesian update of  Tikhonov regularization 

parameter is introduced and applied to the image 

restoration problems. The relationship between 

Tikhonov regularization parameter and Bayesian 

hyperparameters is established. Update formular for 

the regularization parameter using both Maximum 

A Posteriori(: MAP) and evidence frameworks is 

suggested. In section V, experimental results show 

the effectiveness of the proposed method followed 

by the conclusion and reference sections.

Ⅱ. Regularization Parameter Selection in 
the Frequency Domain

In the Tikhonov regularization for an ill-posed 

problem    , we seek a limiting vector    to 

fit data   in least squares sense with penalty term 

for large normed solution in the cost function as

  

∥ ∥ ∥ ∥ . (4)

Regularized estimation vector is defined as

   
     . (5)

Here,   and   are the block circulant matrices of 

a PSF   and a smoothing operator   respectively.

Smoothing functional usually given by the 

Laplacian operator.    is the Tikhonov 

regularization parameter.   and    are the column 

vectors stacking columns of a degraded image   

and a recovered image   respectively. Both   and 

  matrices have the dimension, MN by MN. That 

is, m = n = MN with image dimension M by N.

In the frequency domain, block circulant matrices 

  and   are diagonalized. We denote them   and 

  respectively. Let   and   be the column vectors 

of the Fourier transform of    and    respectively.

Regularized estimation vector is defined as

  
    , (6)

where superscript   denotes the Hermitian or 

conjugate transpose.

Square residual is defined as

∥∥ 





 







. (7)

Here,   and   are the diagonal elements of the 
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matrices   and   respectively.   is the element of 

column vector   stacking columns of 2D Fourier 

transform of the degraded image  .

 Smoothing term is defined as

∥ ∥  





 



 




. (8)

Ⅲ. Unified Bayesian Interpretation of 
Tikhonov Regularization

MAP estimator maximizes the posterior pdf 

  which can be expressed using Bayes' 

law[8] as following

 
 

, (9)


×

.   (10)

Assume that both error and original image 

are Gaussian random vectors, we have

 












∥∥ 

, (11)

 
 











∥∥ 

 .  (12)

By taking the negative log for the Bayes' 

law, we have the MAP interpretation of 

Tikhonov regularization as

 






. (13)

We can interpret the parameter   as a global 

scalar proportionality measure analogous to the 

parametric Wiener filter with setting   to the 
identity matrix.

In the evidence framework[9], we have 

fixed-point iteration known as the MacKay 

update


 ≡   , (14)


 ≡   (15)

or

  , (16)

  . (17)

In these equations,   and   are unknown 

hyper-parameters

 




,   





. (18)

  and   are regularization and cost terms 

respectively

  
∥∥, (19)

  
∥∥ (20)

and   is the number of effective parameters






 


. (21)

Here,    and   denote singular value of 
  

and   respectively.

Then we combine the MAP and the evidence 

frameworks into the unified Bayesian update 

formular for the Tikhonov regularization 

parameter as a fixed point iteration method.
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  








(22)

with

 







. (23)

Now we have the unified Bayesian 

interpretation of Tikhonov regularization.

Ⅳ. A New Image Restoration Method 
using Unified Bayesian Regularization

We have the Bayesian update formular for the 

Tikhonov regularization parameter in the frequency 

domain using equation (7) and (8) as

 


∥∥
∥∥

, (24)

 










 



 







≡




 









(25)

with

 













 






. (26)

Here, we see that the number of effective 

parameters is equal to the sum of filter factors[10].

After calculating   using the fixed point 

iteration, we obtain   as following

      (27)

where superscript   denotes the Hermitian or 

conjugate transpose.

Reshaping the column vector   into 2D matrix to 

obtain  , we finally get the estimation of 

original image by taking inverse 2D FFT.

Ⅴ. Experimental Results

We report the experiments with the new image 

restoration method proposed in the previous two 

sections.  Figure 1 shows the satellite image data 

from the USAF Phillips Laboratory, Laser and 

Imaging Directorate, Kirtland AFB, NM[11].

We compare the unified Bayesian(: UB) method 

with the conventional techniques MDP, GCV, 

L-curve and Wiener filter. Results are depicted in 

the figures 2 , 3 and 4. First row shows the 

restored image data having negative pixel 

components and the second row further processed 

by using projection with non-negativity constraint. 

Visual inspection shows that MDP and L-curve 

results in an over smoothed estimation with 

Laplacian smoother and GCV depicts under 

smoothing with identity matrix.

Fig. 1 Satellite image data.
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Fig. 2 Restored images with Wiener filter as 
benchmark.

Fig. 3 Restored images with Laplacian smoother.

Fig. 4 Restored images with identity smoother.

 The new UB method shows comparable results 

with conventional methods using smoothing 

operator. However, the UB filter depicts under 

smoothing with identity matrix that is more severe 

compared to the GCV method.

Image restoration performance is measured by 

the figure-of-merit functions such as relative error 

(RE), signal to noise ratio (SNR), peak SNR 

(PSNR) and improvement of SNR (ISNR)[7,12-14].

Table 1 and 2 show the image restoration 

performance with remarking value of regularization 

parameter . Results of Wiener filter is included 

for comparison benchmark. Here, we report only 

the restored image data projected with 

non-negativity constraint. We have the equivalent 

results as visual inspection on the restored images.

Measure

Method
RE↓ SNR↑ PSNR ISNR

Remark



MDP 0.3803 8.397 22.03 5.356 8.29e-2

GCV 0.3449 9.247 22.87 6.206 4.45e-3

L-curve 0.4509 6.917 20.55 3.876 1.00e-0

UB 0.3489 9.146 22.77 6.106 7.91e-3

Wiener 0.3243 9.781 23.41 6.740 N/A

Table 1. Performance Results using Laplacian 
smoother with Wiener filter as benchmark. 

Measure

Method
RE↓ SNR↑ PSNR ISNR

Remark 

  

MDP 0.3648 8.758 22.39 5.717 4.75e-4

GCV 0.3575 8.935 22.56 5.895 9.80e-5

L-curve 0.3623 8.818 22.45 5.777 4.38e-4

UB 0.5694 4.891 18.52 1.850 1.72e-5

Table 2. Performance Results with identity 
smoothing operator.

Ⅵ. Conclusions

In this paper, unified Bayesian interpretation of  

Tikhonov regularization is suggested and applied to 

the image restoration problems. The relationship 

between Tikhonov regularization parameter and 

Bayesian hyper-parameters is established. Update 

formular for the regularization parameter using both 

maximum a posteriori and evidence frameworks is 

suggested. Fixed point iteration can be applied for 

the regularization parameter. Experimental results 

show the comparable performance of the unified 

Bayesian method.
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