• Title/Summary/Keyword: Regression testing

Search Result 707, Processing Time 0.025 seconds

Test of Linearity in Panel Regression Model (패널회귀모형에서 선형성검정)

  • 송석헌;최충돈
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.351-364
    • /
    • 2003
  • This paper derives Lagrange multiplier tests based on Double-Length Artificial Regression and Outer-Product Gradient for testing linear and log-linear panel regressions against Box-Cox alternatives. The proposed DLR based LM tests are easy to implement in an error component model. From the Monte Carlo study, the DLR based LM tests are recommended for testing functiona forms.

Fuzzy Local Linear Regression Analysis

  • Hong, Dug-Hun;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.515-524
    • /
    • 2007
  • This paper deals with local linear estimation of fuzzy regression models based on Diamond(1998) as a new class of non-linear fuzzy regression. The purpose of this paper is to introduce a use of smoothing in testing for lack of fit of parametric fuzzy regression models.

  • PDF

The Sequential Testing of Multiple Outliers in Linear Regression

  • Park, Jinpyo;Park, Heechang
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.337-346
    • /
    • 2001
  • In this paper we consider the problem of identifying and testing the outliers in linear regression. first we consider the problem for testing the null hypothesis of no outliers. The test based on the ratio of two scale estimates is proposed. We show the asymptotic distribution of the test statistic by Monte Carlo simulation and investigate its properties. Next we consider the problem of identifying the outliers. A forward sequential procedure based on the suggested test is proposed and shown to perform fairly well. The forward sequential procedure is unaffected by masking and swamping effects because the test statistic is based on robust estimate.

  • PDF

The Scale Ratio Testing of Multiple Outliers in Linear Regression

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.673-685
    • /
    • 2003
  • In this paper we consider the problem of identifying and testing outliers in linear regression. First we consider the problem for testing the null hypothesis of no outliers. A test based on the ratio of two residual scale estimates is proposed. We show the asymptotic distribution of the test statistics by Monte Carlo simulation and investigate its properties. Next we consider the problem of identifying the outliers. A forward sequential procedure using the suggested test is proposed and shown to perform fairly well. Unlike other forward procedures, the present one is unaffected by masking and swamping effects because the test statistic is based on robust scale estimate.

  • PDF

The Detection and Testing of Multiple Outliers in Linear Regression

  • Park, Jin-Pyo;Zamar, Ruben H.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.921-934
    • /
    • 2004
  • We consider the problem of identifying and testing outliers in linear regression. First, we consider the scale-ratio tests for testing the null hypothesis of no outliers. A test based on the ratio of two residual scale estimates is proposed. We show the asymptotic distribution of test statistics and investigate the properties of the test. Next we consider the problem of identifying the outliers. A forward procedure based on the suggested test is proposed and shown to perform fairly well. The forward procedure is unaffected by masking and swamping effects because the test statistics used a robust scale estimate.

  • PDF

Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.655-665
    • /
    • 2016
  • This paper aims to develop models to accurately predict the behavior of fresh concrete exposed to vibration using artificial neural networks (ANNs) model and regression model (RM). For this purpose, behavior of a full scale precast concrete mold was investigated experimentally and numerically. Experiment was performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using both ANNs and RM. For the modeling of ANNs: Experimental data were divided randomly into two parts. One of them was used for training of the ANNs and the remaining part was used for testing the ANNs. For the modeling of RM: Sinusoidal regression model equation was determined and the predicted data was compared with measured data. Finally, both models were compared with each other. The comparisons of both models show that the measured and testing results are compatible. Regression analysis is a traditional method that can be used for modeling with simple methods. However, this study also showed that ANN modeling can be used as an alternative method for behavior of fresh concrete exposed to vibration in precast concrete structures.

The Regional Homogeneity in the Presence of Heteroskedasticity

  • Chung, Kyoun-Sup;Lee, Sang-Yup
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.25-49
    • /
    • 2007
  • An important assumption of the classical linear regression model is that the disturbances appearing in the population regression function are homoskedastic; that is, they all have the same variance. If we persist in using the usual testing procedures despite heteroskedasticity, what ever conclusions we draw or inferences we make be very misleading. The contribution of this paper will be to the concrete procedure of the proper estimation when the heteroskedasticity does exist in the data, because the quality of dependent variable predictions, i.e., the estimated variance of the dependent variable, can be improved by giving consideration to the issues of regional homogeneity and/or heteroskedasticity across the research area. With respect to estimation, specific attention should be paid to the selection of the appropriate strategy in terms of the auxiliary regression model. The paper shows that by testing for heteroskedasticity, and by using robust methods in the presence of with and without heteroskedasticity, more efficient statistical inferences are provided.

  • PDF

Automatic Generation of DB Images for Testing Enterprise Systems (전사적 응용시스템 테스트를 위한 DB이미지 생성에 관한 연구)

  • Kwon, Oh-Seung;Hong, Sa-Neung
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.37-58
    • /
    • 2011
  • In general, testing DB applications is much more difficult than testing other types of software. The fact that the DB states as much as the input data influence and determine the procedures and results of program testing is one of the decisive reasons for the difficulties. In order to create and maintain proper DB states for testing, it not only takes a lot of time and efforts, but also requires extensive IT expertise and business knowledge. Despite the difficulties, there are not enough research and tools for the needed help. This article reports the result of research on automatic creation and maintenance of DB states for testing DB applications. As its core, this investigation develops an automation tool which collects relevant information from a variety of sources such as log, schema, tables and messages, combines collected information intelligently, and creates pre- and post-Images of database tables proper for application tests. The proposed procedures and tool are expected to be greatly helpful for overcoming inefficiencies and difficulties in not just unit and integration tests but including regression tests. Practically, the tool and procedures proposed in this research allows developers to improve their productivity by reducing time and effort required for creating and maintaining appropriate DB sates, and enhances the quality of DB applications since they are conducive to a wider variety of test cases and support regression tests. Academically, this research deepens our understanding and introduces new approach to testing enterprise systems by analyzing patterns of SQL usages and defining a grammar to express and process the patterns.

Test for an Outlier in Multivariate Regression with Linear Constraints

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.473-478
    • /
    • 2002
  • A test for a single outlier in multivariate regression with linear constraints on regression coefficients using a mean shift model is derived. It is shown that influential observations based on case-deletions in testing linear hypotheses are determined by two types of outliers that are mean shift outliers with or without linear constraints, An illustrative example is given.

A JONCKHEERE TYPE TEST FOR THE PARALLELISM OF REGRESSION LINES

  • Jee, Eunsook
    • The Pure and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.109-116
    • /
    • 2013
  • In this paper, we propose a Jonckheere type test statistic for testing the parallelism of k regression lines against ordered alternatives. The order restriction problems could arise in various settings such as location, scale, and regression problems. But most of theory about the statistical inferences under order restrictions has been developed to deal with location parameters. The proposed test is an application of Jonckheere's procedure to regression problem. Asymptotic normality and asymptotic distribution-free properties of the test statistic are obtained under some regularity conditions.