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Abstract

We consider the problem of identifying and testing outliers in linear 
regression. First, we consider the scale-ratio tests for testing the null 
hypothesis of no outliers. A test based on the ratio of two residual scale 
estimates is proposed. We show the asymptotic distribution of test 
statistics and investigate the properties of the test. Next we consider the 
problem of identifying the outliers. A forward procedure based on the 
suggested test is proposed and shown to perform fairly well. The forward 
procedure is unaffected by masking and swamping effects because the 
test statistics used a robust scale estimate.

Keywords :  Forward sequential test, Outliers test, Scale-ratio test

1. Introduction

Consider the linear regression model,

y i =  β 0+ x i1β 1+ x i2β 2+…+ x ipβ p+ e i ,   i= 1,2,…,n         (1.1)

where the error e i  is assumed to be normally distribution with mean zero and 

variance σ
2. The aim of multiple regression is to estimate β= (β 0, β 1,…,β p)

T  

from  the data (x i1,x i2,…,x ip,y i). The most popular estimate β̂  is least squares 

estimate. However, it is well known that the outliers can have an extreme effect 

on the estimate. 
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An outlier is an observation (x i1,x i2,…,x ip,y i)  which deviates from  the pattern 

of majority of the data.

In lower dimension, graphical technique can be used to detect the outliers. 

Outliers can be hard to detect, when p exceeds 2, because we can no longer rely 

on graphical tool. Therefore we have to resort to other methods.

There are two general approaches to dealing with the outliers in regression 

analysis, outlier diagnostics test and robust methods. Each proceeds the same 

problem from opposite side. Since the advantages of one method tend to be the 

disadvantages of the other, we should combine two methods to propose a 

diagnostic test that is unaffected by masking effects.

In this paper, we propose a robust diagnostic tool to detect and test the outliers 

in regression context. This tool, which we call scale-ratio tests, is based on the 

ratio of robust scale estimates and non-robust scale estimate. And then we 

propose the following forward sequential procedure for identifying the outliers. If 

the null hypothesis is rejected then the most extreme observation is removed and 

the test is applied again to the n-1  remaining observations. This procedure is 

applied iteratively and stops when the test is no longer significant. Since it is 

based on a robust estimate of scale, one expects that this procedure will not be 

affected by masking effects. This is confirmed by numerical examples. 

The remaining of the paper is organized as follows. In Section 2 we introduce 

the scale-ratio test and the forward sequential procedure. In Section 3 we derive 

the asymptotic distribution of the scale-ratio test under the null hypothesis and 

calculate the critical values and powers of proposed test. In Section 4 the proposed 

test and the forward sequential procedure are applied to several real data sets and 

artificial data sets in order to show their performances. Section 5 contains some 

concluding remarks.   

2. Scale-Ratio Test 

The scale-ratio test was proposed to test the effects in 2 k  factorial design 

without replicates by Le and Zamer(1992). They derived the asymptotic 

distribution of the scale-ratio test as well as condition that a pitman efficient test 

is obtained.

The scale-ratio test proposed for testing outliers in linear regression is defined 

as follows. Let ρ 1  be the bisquare function with tuning constants c, 

ρ 1(x)= {
(
x
c
)
6
-3(

x
c
)
4
+3(

x
c
)
2
if  |x| < c

1 if |x|≥c

,               (2.1)
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and ψ 1(x)  = ρ
'
1(x).

ψ 1(x)= {
6
c
(
x
c
)
5
-
12
c
(
x
c
)
3
+
6
c
(
x
c
) if  |x| < c

0 if |x|≥c

.           (2.2)

For any β̂ ,  let s( β)  be the solution of 

1
n ∑ρ1(

y i- x i β̂

s )= 12 ,                      (2.3)  

where β̂ =
arg min
β

s(β) .

Let ρ 2  be the unbounded function,

ρ 2(x)= x
2                                      (2.4)

and ψ 2(x)= ρ
'
2(x),

ψ 2(x)= 2x.                                    (2.5)

For any β
*, Let σ(β)  be solution of 

1
n ∑ρ2(

y i- x iβ
*

σ )= 1,                           (2.6)

where β *=
min
β
σ( β) .

Here, s is s-estimate of scale for residuals with a breakdown point 0.5 and σ  is 

the non-robust estimate of scale for residuals since ρ 2  is unbounded.

The scale-ratio test statistics is defined as R=σ/s. The scale-ratio test tests 

the hypothesis,

H 0:  no outliers in data (x i1,x i2,…,x ip,y i) , i= 1,2,…,n

H 1:  outliers in data (x i1,x i2,…,x ip,y i) , i=1,2,…,n.           (2.7)

The null hypothesis is rejected for large value of R. However, if the test rejects 

null hypothesis, there is no indication of how many or which points are outliers. 

To solve this problem, we propose to apply the test sequentially in forward 
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fashion to identify the outliers.  If the test rejects null hypothesis then the point 

with the largest |r i|, where r i= y i- β̂ x i  and β̂  is s-estimate of regression 

coefficients β , is removed and the test is applied again to the n-1  remaining 

data. This procedure is applied iteratively and stops when the test is no longer 

significant.

The s-estimate in the denominator is required to ensure that the test statistics 

is sensitive to outliers and that the forward procedure is not affected by possible 

effects of several outliers.

3. Properties of the Scale-Ratio Test

In this section we consider the properties of the scale-ratio test. First we derive 

that the asymptotic distribution of the scale-ratio test under the null hypothesis is 

N(0,τ
2
)  where

         τ 2=

⌠
⌡

∞

-∞
[ρ 1(y)-E Φ(ρ 1 (y) )]

2φ(y)dy

{⌠⌡
∞

-∞
ρ
'
1(y)⋅yφ(y)dy}

2

     -
{⌠⌡

∞

-∞
ρ1(y)⋅y

2⋅φ(y)dy-⌠⌡

∞

-∞
ρ1(y)⋅y⋅φ(y)dy}

⌠
⌡

∞

-∞
ρ1'(y)⋅y⋅φ(y)dy

+
1
2
,   (3.1)

and φ(⋅)  is the probability density function of the standard normal. The proof is 

sketched in the Appendix.

Next, we calculate the critical values for the scale-ratio test. For this purpose, 

we generate samples for various sample sizes up to 50 in the following situation,

y i= x i1+ x i2+…+ x ip+ e i,                           (3.2)

in which e i∼N(0,1)  and the explanatory variables are generated as 

x ij∼N( 0,100)  for j=1,2,…,p. Using 1000 replicates for each sampling situation 

we compute the critical values for the scale-ratio test. A summary of our results 

for p= 1,2,3,4  and sample size up to 50 is presented in Table 1.
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<Table 1> Critical values for the scale-ratio test

Sample

sizes

Number of explanatory variable

1 2 3 4

α  level α  level α  level α  level

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01  0.05  0.10

20 1.353 1.288 1.225 1.357 1.298 1.246 1.409 1.355 1.306 1.454 1.385 1.335

25 1.276 1.246 1.200 1.322 1.285 1.241 1.389 1.338 1.287 1.419 1.369 1.319

30 1.263 1.226 1.180 1.269 1.234 1.193 1.342 1.291 1.249 1.368 1.324 1.278

35 1.225 1.191 1.153 1.245 1.208 1.177 1.304 1.265 1.227 1.333 1.278 1.237

40 1.209 1.172 1.146 1.221 1.185 1.164 1.283 1.239 1.195 1.292 1.253 1.213

45 1.197 1.169 1.129 1.214 1.182 1.145 1.256 1.220 1.189 1.274 1.258 1.200

50 1.182 1.153 1.128 1.196 1.168 1.141 1.220 1.195 1.166 1.230 1.199 1.176

   

For large sample size, the asymptotic approximate,

C α= 1+0.6539n
- 1/2
Zα                             (3.3)

can be used. Where Z α  is 100(1- α)- th  percentile of standard normal distribution 

and n  is the sample size used to compute the test statistics. When n equals 50, 

C 0.01= 1.215 , C 0.025= 1.181 , C 0.05= 1.152  and C 0.01= 1.119 . The asymptotic 

approximation can also be used to calculate approximate p-values. 

Finally, we consider the power of the scale-ratio test for various situation. For 

this purpose, first, we generate sample as e i∼N( 0,1)  and x ij∼N(0,100). 

Second, to construct outliers in the independent variables space, ( 1-α)×100%  of 

samples are as in the first. The remaining α×100%  are generated as e i∼N(0,1)  

and x ij∼N(μ,100). Finally, we make the outliers in response variable space. For 

this purpose, (1-α)×100%  of the samples are as in the first. The remaining 

α×100%  are generated as  e i∼N(μ,1)  and x ij∼N(0,100). Using 1000 replicates 

for each sampling situation, we compute the power of the scale-ratio test. A 

summary of our results for a single outlier, various magnitude of outliers, 

μ= 10,20,30,40,50,60,70,80,90,100, and sample sizes 25 and 40, is presented in 

the table 2 and 3. The results for two outliers, various magnitude of outlier, 

μ= 10,20,30,40,50,60,70,80,90,100, p= 1  and sample size 25, are presented 

in Table 4. The power of the scale ratio test increases with sample size and 

magnitude of outliers.
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<Table 2> Estimated power of the scale-ratio test(n=25, p=1, one outlier)

Significant

level

Magnitude of outliers

20 30 40 50 60 70 80 90 100

0.10 0.955 0.992 0.997 1.00 1.00 1.00 1.00 1.00 1.00

0.05 0.949 0.986 0.996 1.00 1.00 1.00 1.00 1.00 1.00

0.01 0.943 0.985 0.995 0.996 1.00 1.00 1.00 1.00 1.00

<Table 3> Estimated power of the scale-ratio test(n=40, p=1, one outlier)

Significant

level

Magnitude of outliers

20 30 40 50 60 70 80 90 100

0.1 0.975 0.999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.05 0.969 0.995 0.999 1.00 1.00 1.00 1.00 1.00 1.00

0.01 0.957 0.989 0.996 0.999 1.00 1.00 1.00 1.00 1.00

<Table 4> Estimated power of the scale-ratio test(n=25, p=1, two outliers)

Magnitude 

of outliers

Magnitude of outliers

20 30 40 50

significant level significant level significant level significant level

0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01

20 0.955  0.933  0.928 0.992  0.991  0.985 0.998  0.997  0.996 1.00   1.00   1.00

30 0.956  0.945  0.934 0.993  0.992  0.99 0.999  0.998  0.997 1.00   1.00   1.00

40 0.959  0.947  0.940 0.999  0.998  0.995 0.999  0.999  0.999 1.00   1.00   1.00

50 0.960  0.952  0.944 0.999  0.998  0.995 1.00   0.999  0.999 1.00   1.00   1.00

60 0.963  0.956  0.954 1.00   0.999  0.996 1.00   1.00   1.00 1.00   1.00   1.00

70 0.970  0.963  0.956 1.00   1.00   0.997 1.00   1.00   1.00  1.00   1.00   1.00

80 0.971  0.968  0.957 1.00   1.00   0.998  1.00   1.00   1.00 1.00   1.00   1.00

90 0.973  0.970  0.961 1.00   1.00   1.00 1.00   1.00   1.00 1.00   1.00   1.00

100 0.982  0.972  0.965 1.00   1.00   1.00 1.00   1.00   1.00  1.00   1.00   1.00

 

(continue)
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<Table 4> Estimated power of the scale-ratio test(n=25, p=1, two outliers)(continue)

Magnitude 

of outliers

Magnitude of outliers

60 70 80 90

significant level significant level significant level significant level

0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01

20 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

30 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

40 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

50 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.00 1.000  1.000  1.000

70 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

80 1.000  1.000  1.000 1.000  1.000  1.000  1.000  1.000  1.000 1.000  1.000  1.000

90 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

100 1.000  1.000  1.000 1.000  1.000  1.00 1.000  1.000  1.000 1.000  1.000  1.000

4. Applications of the Scale-Ratio test

In this section, the scale-ratio test is applied to several data sets for the 

purpose of outlier detection. The application begins by applying the scale-ratio test 

to the pilot-plant data given Daniel and Wood(1971). Rousseew and Leroy(1987) 

used these data to illustrate the need for robust regression technique. Suppose 

now that one of the observations has been wrongly recorded. For example, the 

x-value of the sixth observation has been recorded as 370 instead of 37. This 

error produces an outlier in the independent variable space. The data is appeared 

in Table 5. The result for the scale-ratio test is in Table 6.

<Table 5> Pilot-Plant Data set

Obs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Extrac

tion(x)
123 109 62 104 57

370

(37)
44 100 16 28 138 105 159 75 88 164 169 167 149 167

Titrati

on(y)
76 70 55 71 55 48 50 66 41 43 82 68 88 58 64 88 89 88 84 88

*(37) is original data of pilot-plant data set 
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<Table 6> Scale-Ratio Test Applied to the contaminated pilot-plant data

Sample size Observation selected Scale-ratio test 
statistics

critical values

 0.01      0.05       0.1

20 6 10.049 1.353     1.288     1.225  

19 20 0.8496 1.373     1.298     1.238 

In Table 6, the test is highly significant for observation 6 that is wrongly 

recorded. When the test is applied to the remaining 19, it is not rejected. For this 

example, the scale-ratio test yields a correct result.

The second application for outliers detection comes from the Brownlee(1965). 

The data is well-known stackloss data set. We have selected this example 

because it is a set of real data and it is examined by many statisticians. Most 

people concluded  that observations 1, 3, 4, and 21 were outliers. Some people 

reported that observation 2 was outlier. The data are shown in the Table 7. The 

result for the scale-ratio test appears in Table 8. In Table 8, observation 21 is the 

most extreme followed by observation 4, observation 1, observation 3, and 

observation 2. The test identifies observation 21, 4, 1, and 3 as outliers. But it 

does not detect observation 2 as outlier. This result is the same to conclusion that 

most people reported.

<Table 7> Stackloss Data

Obs Rate(x1) Temperature(x2) Acid 
concentration(x3) Stackloss(y)

1 80 27 89 42

2 80 27 88 37

3 75 25 90 37

4 62 24 87 28

5 62 22 87 18

6 62 23 87 18

7 62 24 93 19

8 62 24 93 20

9 58 23 87 15

10 58 18 80 14

11 58 18 89 14

12 58 17 88 13

13 58 18 82 11

14 58 19 93 12

15 50 18 89 8

16 50 18 86 7

17 50 19 72 8

18 50 19 79 8

19 50 20 80 9

20 56 20 82 15

21 70 20 91 15
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<Table 8> Scale-Ratio Test Applied to the stackloss Data

Sample size
Observation 

selected

Scale ratio 

statistics

Critical Values

0.01 0.05 0.10

21 21 1.766 1.403 1.345 1.297

20 4 1.546 1.409 1.355 1.306

19 1 1.472 1.438 1.355 1.316

18 3 1.606 1.493 1.404 1.336

17 2 1.236 1.497 1.404 1.336

Let us look at a finally example containing multidimensional real data. These 

data came from Draper and Smith(1966) and were used to determine the influence 

of anatomical factors on wood specific gravity. Rousseeuw and Leroy(1987) used a 

contaminated version of these data to compare the various diagnostic. These 

contaminated data are the outliers that are not outlying in any of the individual 

variables.

The results for comparing the various diagnostic appear in Table 10. The 

contaminated data are shown in Table 9. We applied the scale-ratio test for the 

contaminated data. The result is listed in Table 11.

<Table 9> Contaminated Data on Wood Specific Gravity

Index x 1 x 2 x 3 x 4 x 5 y
1 0.5730 0.1059 0.4650 0.5380 0.8410 0.5340

2 0.6510 0.1356 0.5270 0.5450 0.8870 0.5350

3 0.6060 0.1273 0.4940 0.5210 0.9200 0.5700

4 0.4370 0.1591 0.4460 0.4230 0.9920 0.4500

5 0.5470 0.1135 0.5310 0.5190 0.9150 0.5480

6 0.4440 0.1628 0.4290 0.4110 0.9840 0.4310

7 0.4890 0.1231 0.5620 0.4550 0.8240 0.4810

8 0.4130 0.1673 0.4180 0.4300 0.9780 0.4230

9 0.5360 0.1182 0.5920 0.4640 0.8540 0.4750

10 0.6850 0.1564 0.6310 0.5640 0.9140 0.4860

11 0.6640 0.1588 0.5060 0.4810 0.8670 0.5540

12 0.7030 0.1335 0.5190 0.4840 0.8120 0.5190

13 0.6530 0.1395 0.6250 0.5190 0.8920 0.4290

14 0.5860 0.1114 0.5050 0.5650 0.8890 0.5170

15 0.5340 0.1143 0.5210 0.5700 0.8890 0.5020

16 0.5230 0.1320 0.5050 0.6120 0.9190 0.5080

17 0.5800 0.1249 0.5460 0.6080 0.9540 0.5200

18 0.4480 0.1028 0.5220 0.5340 0.9180 0.5060

19 0.4170 0.1687 0.4050 0.4150 0.9810 0.4010

20 0.5280 0.1057 0.4240 0.5660 0.9090 0.5680
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In Table 10, diagnostics based on least squares estimate did not succeed in 

identifying the actual contaminated observations, because they are susceptible to 

masking effect. But the standardized LMS(least median of squares)residuals and 

the resistant diagnostic suggested by Rousseeuw and Leroy identify the 

contaminated data 4, 6, 8, and 19 as the outliers.

In Table 11, dbservation 19 is the most extreme followed by observation 6, 

observation 8, observation 4 and observation 5. But the test does not reject 

observation 5 at significant 0.01. This test identifies observation 19, 6, 8 and 4 as 

outliers. This result confirms the conclusions drawn from the standardized LMS 

residuals and the resistant diagnostic.

<Table 10> Diagnostics for the Data in Table 9

[ h ii  ; Squared Mahalanobis Distance; Standardized, Studentized, and Jackknifed Ls 

Residuals; CD 2(i); DFFITS; DFBETAS; Standardized LMS Residuals, and RDi  ]

Index

i

Based on least squares method Robust

h ii

0.600

MD 2i

11.07

r i/s

2.50

t i

2.50

t( i)

2.50

CD 2( i)

1.00

DFFITS

1.095

CFBETAS(0.447) r i/s

2.50

RDi

2.50β 1 β 2 β 3 β 4 β 5 Const.

1 0.278 4.327 -0.73 -0.85 -0.84 0.047 -0.524 -0.004 0.055 0.328 -0.052 0.215 -0.347 -0.16 0.798

2 0.132 1.552 0.05 0.05 0.05 0.000 0.019 0.009 0.002 -0.005 0.002 0.000 -0.003 0.00 0.701

3 0.220 3.224 1.24 1.41 1.46 0.093 0.776 -0.651 -0.523 -0.206 -0.429 0.549 -0.356 0.55 0.577

4 0.258 3.959 0.35 0.41 0.40 0.010 0.236 0.035 -0.049 0.015 -0.105 0.118 -0.074 -14.79 3.938

5 0.223 3.277 1.00 1.14 1.15 0.062 0.615 0.286 -0.517 0.164 -0.388 0.437 -0.244 1.75 0.605

6 0.259 3.974 -0.45 -0.53 -0.51 0.016 -0.302 -0.053 0.037 0.035 0.130 -0.113 0.050 -17.68 4.520

7 0.530 9.124 0.91 1.32 1.36 0.329 1.448 -0.956 0.424 0.521 0.133 -0.964 1.027 0.73 1.421

8 0.289 4.536 -0.03 -0.04 -0.04 0.000 -0.025 0.011 -0.012 0.005 -0.005 0.006 -0.005 -17.31 4.466

9 0.348 5.665 -0.40 -0.49 -0.48 0.021 -0.348 0.052 0.105 -0.224 0.161 0.007 -0.075 -0.73 1.243

10 0.449 7.588 -0.42 -0.56 -0.55 0.043 -0.492 -0.008 -0.198 -0.256 -0.137 -0.029 0.257 -0.40 1.267

11 0.317 5.075 1.99 2.40 3.02 0.447 2.059 0.425 0.970 0.748 0.198 -0.800 0.521 0.00 1.258

12 0.410 6.833 -1.20 -1.56 -1.65 0.281 -1.376 -0.597 0.013 0.556 0.359 0.368 -0.566 -1.88 1.030

13 0.287 4.506 -0.49 -0.58 -0.56 0.022 -0.356 -0.098 0.045 -0.251 0.106 -0.121 0.180 0.00 1.015

14 0.129 1.500 -1.26 -1.35 -1.40 0.045 -0.537 -0.169 0.228 0.178 -0.006 -0.103 0.021 -1.30 0.668

15 0.152 1.945 -0.59 -0.64 -0.62 0.012 -0.264 0.148 -0.061 -0.011 -0.162 0.108 -0.073 -0.34 0.465

16 0.526 9.049 0.52 0.76 0.75 0.107 0.789 -0.529 0.559 -0.052 0.745 -0.432 0.122 0.00 0.865

17 0.289 4.548 -0.25 -0.30 -0.29 0.006 -0.187 -0.019 0.019 -0.044 -0.055 -0.086 0.133 0.00 0.802

18 0.294 4.637 0.28 0.34 0.33 0.008 0.211 -0.062 -0.096 0.081 -0.024 0.045 -0.002 -0.21 0.985

19 0.292 4.599 -1.08 -1.29 -1.32 0.114 -0.849 0.195 -0.287 0.231 -0.024 0.079 -0.128 -20.84 5.201

20 0.318 5.084 0.55 0.66 0.65 0.034 0.441 0.092 -0.154 -0.305 0.037 0.046 0.064 0.00 0.816
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<Table 11>  Scale-Ratio Test for the Data in table 9

Sample size
observation 

selected

scale ratio 

statistics

Critical Values

0.01 0.05 0.10

20 19 1.783 1.484 1.415 1.365

19 6 1.948 1.518 1.445 1.395

18 8 2.068 1.547 1.472 1.412

17 4 2.635 1.577 1.492 1.433

16 5 1.227 1.671 1.522 1.463

   

The above examples demonstrate the performance of the scale-ratio test and are 

unaffected by masking effects.

5. Concluding Remarks

It is very important to test and detect the multiple outliers in linear regression. 

Several diagnostic measures based on the resulting from the least squares 

estimate have been proposed to identify the multiple outliers. However, the 

accuracy of diagnostic measures is very suspect because these can be severely 

affected by the masking and swamping effects. This inaccuracy can seriously 

affect their performance. 

In this paper, we proposed the forward sequential test for testing and detecting 

the multiple outliers. This was founded on a robust estimate of scale. 

In principle, the forward sequential test sets up a natural simple approach for 

identifying the multiple outliers. However, if the forward sequential test is founded 

on the resulting from the least squares estimate, it can be seriously affected by 

the masking and swamping effects. On the other hand, if the forward sequential 

test is founded on a robust estimate of scale, like the test proposed in this paper, 

the problem for the masking and swamping effects can be overcome.

We proved that the proposed forward sequential test was not affected by the 

masking and swamping effects through the Monte Carlo results and numerical 

examples. These suggest that the proposed test provides a conservative and fairly 

powerful method for the detection of the multiple outliers in linear regression. 
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APPENDIX : A sketch of proof for the Asymptotic distribution 

of scale-ratio test

To derive the asymptotic distribution of the scale-ratio test under the null 

hypothsis, the Taylor expansion of (2.3) about β̂ = β 0  and s= s 0  gives, 

1
2
=
1
n ∑ρ1( y i- β

T
0 x i

s 0 ) -( 1ns 0 ∑ρ1'(
y i- β

T
0 x i

s 0 )x i)( β̂- β 0)

-
1
ns 0
∑ρ1'( y i- β

T
0 x i

s 0 )( y i- β
T
0 x i

s 0 )( s- s 0)+….          (A-1)

Since n( β̂- β 0)  is asymptotically normal, the law of large number implies

n
-
1
2 [ 1s 0 ∑ρ1'(

y i- β
T
0 x i

s 0 )x i)]( β̂- β 0) → 0  in probability as n → ∞    (A-2)

and

1
n ∑ρ1'( y i- β

T
0 x i

s 0 )( y i- β
T
0 x i

s 0 ) → Eρ1'( y- β
T
0 x

s 0 )( y- β
T
0 x

s 0 )  
almost surely as n → ∞ .    (A-3)

Thus, using (A-1) - (A-3) we have the following asymptotic equivalence

n( s- s 0 )≈s 0

n[ 1n ∑ρ1 ( y i-β
T
x i

s 0 )- 12 ]
Eρ1' ( y-β

T
x

s 0 ) ( y-β
T
x

s 0 )
.                (A-4)

Without loss of generality we assume that βT0 = 0, s 0=1

n( s-1)≈
n[ 1n ∑ρ1 (y i)-

1
2 ]

Eρ 1' (y)⋅y
.                  (A-5)

By central limit theorem
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n( s-1) → N(0,V),                         (A-6)

where

V=

⌠
⌡[ρ 1(y)-E Φ(ρ 1(y) )]

2φ(y)dy

{⌠⌡ρ 1'(y)⋅y φ(y)dy}
2

.                 (A-7)

Similarly

n( σ-1) → N(0,
1
2
).                         (A-8)

Thus, using (A-6) and (A-8) we have the following asymptotic distribution of 

n( s-σ)

n( s-σ) → N(0,τ 2),                         (A-9)

where     

   τ 2=

⌠
⌡

∞

-∞
[ρ 1(y)-E Φ(ρ 1 (y) )]

2
φ(y)dy

{⌠⌡
∞

-∞
ρ '1(y)⋅yφ(y)dy}

2
                               

-
{⌠⌡

∞

-∞
ρ1(y)⋅y

2
⋅φ(y)dy-⌠⌡

∞

-∞
ρ1(y)⋅y⋅φ(y)dy}

⌠
⌡

∞

-∞
ρ1'(y)⋅y⋅φ(y)dy

+
1
2
.    (A-10)

Moreover, the test statistics n
1
2
{ (σ/s)-1}  and n(σ- s)  are equivalent under 

null hypothesis. Hence we can have the following conclusion 

n
1
2 { (σ/s)-1} → N( 0,τ 2).                        (A-11)
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