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Abstract

In this paper we consider the problem of identifying and testing outliers 
in linear regression. First we consider the problem for testing the null 
hypothesis of no outliers. A test based on the ratio of two residual scale 
estimates is proposed. We show the asymptotic distribution of the test 
statistics by Monte Carlo simulation and investigate its properties. Next 
we consider the problem of identifying the outliers. A forward sequential 
procedure using the suggested test is proposed and shown to perform 
fairly well. Unlike other forward procedures, the present one is unaffected 
by masking and swamping effects because the test statistic is based on 
robust scale estimate.

Keywords and Phrases : Outliers test, Forward sequential procedure, 

Optimal weight function.

1. INTRODUCTION

Consider the linear regression model,

               yi = β0+xi1β1+xi2β2+…+xipβp+ei ,   i=1,2,…,n                   (1)

where the β i's are unknown parameters and the error e i's are independent 

normal random variables with mean zero and variance σ2. It well known that 

outliers can have an extreme effect on the least squares estimate. Therefor the 

outlier problem has been around for many years. Intuitively, an outlier is an 

observation (xi1,xi2,…,xip, yi)  which deviate from the linear relation followed by 

the majority of the data. The non-outlying data will be referred to as the good 
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observations. It is assumed that the good data contains more data than 50% of 

the observations in the sample.

In lower dimension, graphical techniques can be used to detect outliers. When 

the regression model has less than three independent variables, outliers can be 

detected by scatter plots and spin plots. But the degree of outlyingness is based 

on the judgement of the researcher. Unfortunately, once the dimension is greater 

than three, it is difficult to detect the outliers by graphical tool. We have to resort 

to other methods.

There are two general approaches to dealing with outliers, diagnostics test and 

robust methods of analysis. They attack the problem from opposite points of view. 

Since the advantages of one method tend to be the disadvantages of the other, the 

two approaches to the outlier problem should be combined to produce a diagnostic 

test that which is not affected by masking and swamping effects. This test could 

then be applied sequentially in a forward fashion to not only detect the outliers 

but to indicate the number present as well. Furthermore, the test have to applied 

until that it fails to identify the presence of an outlier because it should not be 

fooled by masking and swamping effects.

In this paper, we propose a robust diagnostic tool for detecting and testing 

outliers in a linear regression. This tool is based on the ratio of a robust scale 

estimate and a non robust scale estimate. And then we propose the following 

forward sequential procedure for detecting the outliers. If the null hypothesis is 

rejected then the most extreme observation is removed and the test is applied 

again to the n-1 remaining observations. This procedure is applied iteratively and 

stops when the test is no longer significant. Since it is based on a robust scale 

estimate, one expects that this procedure will not be affected by masking and 

swamping effects. This is confirmed by numerical examples. 

The remaining of the paper is organized as follows. In Section 2 we introduce 

the  test statistic and the forward sequential procedure. In Section 3 we derive 

that the asymptotic distribution of the test statistics under the null hypothesis and 

calculate the critical values and powers of proposed test by Monte Carlo 

simulation. In Section 4  the proposed test and the forward sequential procedure is 

applied to several real data sets and artificial data sets in order to show their 

performances. Section 5 contains some concluding remarks.   

Ⅱ. DETECTION AND TESTING OUTLIERS

To test the hypothesis  

          H 0 :  no outlier in data (xi1,xi2,…,xip,yi), i=1,2,…,n               (2)

          H 1 :  some outliers in data (xi1,xi2,…,xip,yi), i=1,2,…,n
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in the linear regression, we propose a test statistic. The test statistic is a ratio of 

two scale estimates, s 1 , which is sensitive to outliers, and s 2 , which is highly 

robust.  

The s 1  and s 2  are defined as follows. Let ρ1  be an optimal weight function 

introduced in Yohai and Zamar(1988). They showed that the function given above 

are optimal in following highly desirable sense: the final M-estimate has a 

breakdown point of one-half, and minimizes the maximum bias under 

contamination distributions, subject to achieving a desired efficiency when the data 

is Gaussian.

The Yohai and Zamar's optimal functions ρ1(⋅;c)  is as follows:    
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For any β̂,  let s 2( β)  be the solution of 

                        1
n ∑ρ1( yi-x i β̂s2 )= 12 ,                             (5)

where β̂=
argmin
β

s2( β) .

Let ρ2  be the unbounded function,

                          ρ2(x)=x
2                                          (6)

and ψ2(x)=ρ
'
2(x),
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                          ψ2(x)=2x                                          (7)

For any β*, let s 1( β)  be solution of 

                        1
n ∑ρ2( yi-xiβ

*

s1 )=1,                              (8)
where β*=

min
β
s1( β) . 

 Here, s 2  is S-estimate of residuals scale with a breakdown point 0.5 and s 1  is 

the non-robust estimate of residuals scale since ρ2  is unbounded. 

  The test statistic is defined as 

                                 v=s1/s2.                                   (9)

The null hypothesis is rejected when v  is too large. However, when the null 

hypothesis is rejected, there is no indication of how many or which points are 

outliers. To solve this problem, we propose to apply the test sequentially in 

forward sequential procedure to identify the outliers. If the test  rejects the null 

hypothesis then the point with the largest D=|sort(ri)-Med(ri)|  is defined as an 

outlier. Where ri=yi-β̂xi  and β̂  is S-estimate of regression coefficients β  and 

sort(r i)  is the sort of ri  and Med(r i)  is the median of ri. The observation 

detected as an outlier is removed and the test is applied again to the n-1 

remaining observations. The procedure is repeated and stops when the test is no 

longer significant. The robust estimate of scale in the denominator is required to 

ensure that the test statistic is sensitive to outliers and that the forward 

sequantial procedure is not affected by possible masking and swamping effects of 

several outliers.

Ⅲ. PROPERTIES OF THE TEST STATISTIC

In this section we consider the properties of the proposed test. First we 

calculate the critical values for the test. For this purpose, we generate samples for 

various sample size up to 50 in the following situation,

                            yi=xi1+xi2+…+xip+ei,                          (10)

in which e i∼N(0,1)  and the explanatory variables are generated as x ij∼N(0,49)  

for j=1,2,…,p. Using 1000 replicates for each sampling situation we compute the 

critical values for the test. A summary of our results for p=1,2,3,4  and sample 
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size up to 50 is presented in the Table 1. Next, we consider the power of the test 

for various situation. First, we  generate a sample as ei∼N(0,1)  and 

xij∼N(0,49). Second, to construct outliers in the  independent variables space, 

(1-α)×100%  of samples are as in the first. The remaining α×100%  are 

generated as ei∼N(0,1)  and xij∼N(μ,49). Finally, we make the outliers in 

response variable space. For this purpose, (1-α)×100%  of the samples are as in 

the first. The remaining α×100%  are generated as  ei∼N(μ,1)  and x ij∼N(0,49).

Using 1000 replicates for each sampling situation, we compute the power of the 

test. A summary of our results for a single outlier, various magnitude of outliers, 

μ=10,20,30,40,50,60, 70, 80, 90, 100, p=1 and sample sizes 25 and 40, are presented 

in the Table 2 and 3. The results for two outliers, various magnitude of outlier, 

μ=10,20,30,40,50,60, 70,80, 90, 100, p=1 and sample size 25 are presented in the 

Table 4. The power of the test increases with sample size and magnitude of 

outliers.

 Table 1. Critical values for the proposed test 

Table 2. Estimated power of the proposed test(n=25, p=1, one outlier)

significant

level

magnitude of outliers

20 30 40 50 60 70 80 90 100

0.1 0.955 0.997 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.05 0.949 0.996 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.01 0.941 0.995 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Sample

sizes

    Number of explanatory variable

1 2 3 4

α level α  level α level α  level

0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

20 1.353 1.288 1.225 1.357 1.298 1.246 1.409 1.355 1.306 1.454 1.385 1.335

25 1.276 1.246 1.200 1.322 1.285 1.241 1.389 1.338 1.287 1.419 1.369 1.319

30 1.263 1.226 1.180 1.269 1.234 1.193 1.342 1.291 1.249 1.368 1.324 1.278

35 1.225 1.191 1.153 1.245 1.208 1.177 1.304 1.265 1.227 1.333 1.278 1.237

40 1.209 1.172 1.146 1.221 1.185 1.164 1.283 1.239 1.195 1.292 1.253 1.213

45 1.197 1.169 1.129 1.214 1.182 1.145 1.256 1.220 1.189 1.274 1.258 1.200

50 1.182 1.153 1.128 1.196 1.168 1.141 1.220 1.195 1.166 1.230 1.199 1.176
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Table 3. Estimated power of the proposed test(n=40, p=1.one outlier)

significant

level

magnitude of outliers

20 30 40 50 60 70 80 90 100

0.1 0.974 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.05 0.972 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.01 0.965 0.999 1.00 0.999 1.00 1.00 1.00 1.00 1.00
 

Table 4. Estimated power of the proposed test(n=25, p=1, two outliers)

magnitude 

of outliers

magnitude of outliers

20 30 40 50

significant level significant level significant level significant level

0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01

20 0.965  0.943  0.938 0.995  0.993  0.988 0.998  0.997  0.996 1.00   1.00   1.00

30 0.966  0.955  0.944 0.996  0.994  0.99 0.999  0.998  0.997 1.00   1.00   1.00

40 0.969  0.957  0.950 1.00  0.999  0.995 1.00  1.00  1.00 1.00   1.00   1.00

50 0.970  0.962  0.954 1.00  0.999  0.995 1.00   1.00  1.00 1.00   1.00   1.00

60 0.973  0.966  0.958 1.00   1.00  0.996 1.00   1.00   1.00 1.00   1.00   1.00

70 0.975  0.973  0.963 1.00   1.00   0.997 1.00   1.00   1.00  1.00   1.00   1.00

80 0.977  0.975  0.967 1.00   1.00   0.998  1.00   1.00   1.00 1.00   1.00   1.00

90 0.983  0.977  0.972 1.00   1.00   1.00 1.00   1.00   1.00 1.00   1.00   1.00

100 0.991  0.985  0.983 1.00   1.00   1.00 1.00   1.00   1.00  1.00   1.00   1.00

  

continue(Table 4)

magnitude 

of outliers

magnitude of outliers

60 70 80 90

significant level significant level significant level significant level

0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01 0.1    0.05    0.01

20 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

30 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

40 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

50 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

60 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.00 1.000  1.000  1.000

70 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

80 1.000  1.000  1.000 1.000  1.000  1.000  1.000  1.000  1.000 1.000  1.000  1.000

90 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000 1.000  1.000  1.000

100 1.000  1.000  1.000 1.000  1.000  1.00 1.000  1.000  1.000 1.000  1.000  1.000
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Finally, we consider the asymptotic distribution of the test statistic. This is 

obtained by the result of Monte Carlo simulation of 1000 replications under the 

null hypothesis. For various sample sizes and the number of explanatory variables, 

Q-Q plots of the test statistics are similar. So a Q-Q plot of the test statistic for 

sample size 100 in p=3  is  shown only in Figure1.

Though the extreme quantiles for the test statistic is the greater spread, all of 

them appear to follow the normal distribution approximately.

Figure1. Normal probability plot of 1000 test    

        statistics for size 100 in p= 3
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Ⅳ. APPLICATIONS OF THE PROPOSED TEST

In this section, the proposed test is applied to several data sets for the purpose 

of testing and detecting outliers.

Example 1 ( Pilot-Plant Data) 

The application begins by applying the test to the pilot-plant data given by 

Daniel and Wood(1971). Rousseew and Leroy(1987) used these data to illustrate 

the need for robust regression technique. Suppose now that one of the 

observations has been wrongly recorded. For example, the x-value of the sixth 

observation has been recorded as 370 instead of 37. This error produces an outlier 

in the independent variable space. The data appear in the Table 5. The results for 

the proposed test are in the Table 6.
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Table 5. Pilot-Plant data set

index Extraction(x) Titration(y) index Extraction(x) Titration(y)

1 123 76 11 138 82

2 109 70 12 105 68

3 62 55 13 159 88

4 104 71 14 75 58

5 57 55 15 88 64

6 370(37) 48 16 164 88

7 44 50 17 169 89

8 100 66 18 167 88

9 16 41 19 149 84

10 28 43 20 167 88

  

  

     *(37) is original data of pilot-plant data set 

Table 6. The proposed test applied to the contaminated pilot-plant data

sample size observation selected proposed test statistics
critical values

0.01      0.05      0.1

20 6 10.048 1.353     1.288   1.225 

19 11 0.8567 1.373     1.298    1.238  

In the Table 6, the test is highly significant for observation 6 that wrongly 

recorded. When the test is applied to the remaining 19 observations, null 

hypothesis is not rejected. For this example, the proposed test yields a correct 

result.

Example 2 ( Stackloss Data)

The second application for testing and detecting outliers comes from the 

Brownlee(1965). The data is well-known stackloss data set. We have selected this 

example because it is a set of real data and it is examined by many statisticians. 

Most people concluded  that observation 1,

3, 4, and 21 were outliers. Some people reported that observation 2 was outlier. 

The data are shown in the Table 7. The result for the proposed test appear in the 

Table 8. In the Table 8, observation 21 is the most extreme followed by 

observation 4, observation 1, observation 3 and observation 2. The test identifies 

observation 21, 4, 1, and 3  as outliers.  When the test is applied to the remaining 
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17 observations, null hypothesis is not rejected. Hence observation 2 is not a 

outlier.  This result is the same to conclusion that most people reported. 

Table 7. Stackloss data

index rate 

(x1)

temper- 

ature(x2)

acid concen-

tration(x3)

stackless

  (y)

index rate

(x1)

temper- 

ature(x2)

acid concen- 

tration(x3)

stackless

(y)

1 80 27 89 42 12 58 17 88 13

2 80 27 88 37 13 58 18 82 11

3 75 25 90 37 14 58 19 93 12

4 62 24 87 28 15 50 18 89 8

5 62 22 87 18 16 50 18 86 7

6 62 23 87 18 17 50 19 72 8

7 62 24 93 19 18 50 19 79 8

8 62 24 93 20 19 50 20 80 9

9 58 23 87 15 20 56 20 82 15

10 58 18 80 14 21 70 20 91 15

11 58 18 89 14

Table 8. The proposed test applied to the stackloss data

Sample size
observation 

selected

proposed test 

statistics

Critical Values

0.01 0.05 0.10

21 21 1.7655 1.403 1.345 1.297

20 4 1.5459 1.409 1.355 1.306

19 1 1.4720 1.438 1.355 1.316

18 3 1.6047 1.493 1.404 1.336

17 2 1.236 1.497 1.404 1.336

Example 3 (Wood Specific Gravity)

Let us look at a finally example containing multidimensional real data. These 

data came from Draper and Smith(1966) and were used to determine the influence 

of anatomical factors on wood specific gravity. Rousseeuw and Leroy(1987) used a 

contaminated version of these data to compare the various diagnostic. These 

contaminated data is the outliers that are not outlying in any of the individual 

variables.

The result for comparing the various diagnostic appear in the table 10. The 

contaminated data is shown in the table 9. We applied the scale-ratio test for the 

contaminated data. The result is listed in  the table 11.
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Table 9. Contaminated Data on Wood Specific Gravity

   

In the table 10, diagnostics based on least squares estimate did not succeed in 

identifying the actual contaminated observations, because they are susceptible to 

masking effect. But the standardized LMS(least median of squares)residuals and 

the resistant diagnostic suggested by Rousseeuw and Leroy identify the 

contaminated data 4, 6, 8, and 19 as the outliers.

In the table 11, Observation 19 is the most extreme followed by observation 6, 

observation 8, observation 4 and observation 13. Because the test does not reject 

null hypothesis at significant 0.01  observation 13 is not an outlier. This test 

identify observation 19, 6, 8 and 4 as outliers. This result confirms the conclusions 

drawn from the standardized LMS residuals and the resistant diagnostic.

Index x 1 x 2 x 3 x 4 x 5 y

1 0.5730 0.1059 0.4650 0.5380 0.8410 0.5340

2 0.6510 0.1356 0.5270 0.5450 0.8870 0.5350

3 0.6060 0.1273 0.4940 0.5210 0.9200 0.5700

4 0.4370 0.1591 0.4460 0.4230 0.9920 0.4500

5 0.5470 0.1135 0.5310 0.5190 0.9150 0.5480

6 0.4440 0.1628 0.4290 0.4110 0.9840 0.4310

7 0.4890 0.1231 0.5620 0.4550 0.8240 0.4810

8 0.4130 0.1673 0.4180 0.4300 0.9780 0.4230

9 0.5360 0.1182 0.5920 0.4640 0.8540 0.4750

10 0.6850 0.1564 0.6310 0.5640 0.9140 0.4860

11 0.6640 0.1588 0.5060 0.4810 0.8670 0.5540

12 0.7030 0.1335 0.5190 0.4840 0.8120 0.5190

13 0.6530 0.1395 0.6250 0.5190 0.8920 0.4290

14 0.5860 0.1114 0.5050 0.5650 0.8890 0.5170

15 0.5340 0.1143 0.5210 0.5700 0.8890 0.5020

16 0.5230 0.1320 0.5050 0.6120 0.9190 0.5080

17 0.5800 0.1249 0.5460 0.6080 0.9540 0.5200

18 0.4480 0.1028 0.5220 0.5340 0.9180 0.5060

19 0.4170 0.1687 0.4050 0.4150 0.9810 0.4010

20 0.5280 0.1057 0.4240 0.5660 0.9090 0.5680
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Table 10. Diagnostics for the Data in Table 9[ hii  ; Squared Mahalanobis Distance; 

Standardized, Studentized, and Jackknifed Ls Residuals; CD 2(i); DFFITS; DFBETAS; 

Standardized LMS Residuals, and RD i    

index

i

Based on Lesat squares method Robust

hii

0.600

MD2i

11.07

ri/s

2.50

t i

2.50

t( i)

2.50

CD 2( i)

1.00

DFFITS

1.095

CFBETAS(0.447) ri/s

2.50

RD i

2.50β1 β2 β3 β4 β5 Const.

1 0.278 4.327 -0.73 -0.85 -0.84 0.047 -0.524 -0.004 0.055 0.328 -0.052 0.215 -0.347 -0.16 0.798

2 0.132 1.552 0.05 0.05 0.05 0.000 0.019 0.009 0.002 -0.005 0.002 0.000 -0.003 0.00 0.701

3 0.220 3.224 1.24 1.41 1.46 0.093 0.776 -0.651 -0.523 -0.206 -0.429 0.549 -0.356 0.55 0.577

4 0.258 3.959 0.35 0.41 0.40 0.010 0.236 0.035 -0.049 0.015 -0.105 0.118 -0.074 -14.79 3.938

5 0.223 3.277 1.00 1.14 1.15 0.062 0.615 0.286 -0.517 0.164 -0.388 0.437 -0.244 1.75 0.605

6 0.259 3.974 -0.45 -0.53 -0.51 0.016 -0.302 -0.053 0.037 0.035 0.130 -0.113 0.050 -17.68 4.520

7 0.530 9.124 0.91 1.32 1.36 0.329 1.448 -0.956 0.424 0.521 0.133 -0.964 1.027 0.73 1.421

8 0.289 4.536 -0.03 -0.04 -0.04 0.000 -0.025 0.011 -0.012 0.005 -0.005 0.006 -0.005 -17.31 4.466

9 0.348 5.665 -0.40 -0.49 -0.48 0.021 -0.348 0.052 0.105 -0.224 0.161 0.007 -0.075 -0.73 1.243

10 0.449 7.588 -0.42 -0.56 -0.55 0.043 -0.492 -0.008 -0.198 -0.256 -0.137 -0.029 0.257 -0.40 1.267

11 0.317 5.075 1.99 2.40 3.02 0.447 2.059 0.425 0.970 0.748 0.198 -0.800 0.521 0.00 1.258

12 0.410 6.833 -1.20 -1.56 -1.65 0.281 -1.376 -0.597 0.013 0.556 0.359 0.368 -0.566 -1.88 1.030

13 0.287 4.506 -0.49 -0.58 -0.56 0.022 -0.356 -0.098 0.045 -0.251 0.106 -0.121 0.180 0.00 1.015

14 0.129 1.500 -1.26 -1.35 -1.40 0.045 -0.537 -0.169 0.228 0.178 -0.006 -0.103 0.021 -1.30 0.668

15 0.152 1.945 -0.59 -0.64 -0.62 0.012 -0.264 0.148 -0.061 -0.011 -0.162 0.108 -0.073 -0.34 0.465

16 0.526 9.049 0.52 0.76 0.75 0.107 0.789 -0.529 0.559 -0.052 0.745 -0.432 0.122 0.00 0.865

17 0.289 4.548 -0.25 -0.30 -0.29 0.006 -0.187 -0.019 0.019 -0.044 -0.055 -0.086 0.133 0.00 0.802

18 0.294 4.637 0.28 0.34 0.33 0.008 0.211 -0.062 -0.096 0.081 -0.024 0.045 -0.002 -0.21 0.985

19 0.292 4.599 -1.08 -1.29 -1.32 0.114 -0.849 0.195 -0.287 0.231 -0.024 0.079 -0.128 -20.84 5.201

20 0.318 5.084 0.55 0.66 0.65 0.034 0.441 0.092 -0.154 -0.305 0.037 0.046 0.064 0.00 0.816

 Table 11.  Scale-Ratio Test for the Data in table 9

Sample size
observation 

selected

scale ratio 

statistics

Critical Values

0.01 0.05 0.10

20 19 1.867 1.584 1.515 1.465

19 6 2.144 1.718 1.645 1.595

18 8 2.525 1.847 1.772 1.712

17 4 2.772 1.977 1.892 1.833

16 13 1.557 1.981 1.922 1.863
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The above example demonstrate the performance of the scale-ratio test and is 

unaffected by masking effects.

 Ⅴ. CONCLUDING REMARKS

It is very important to test and detect the multiple outliers in linear regression. 

Several diagnostic measures based on the resulting from the least squares 

estimate have been proposed to identify the multiple outliers. However, the 

accuracy of diagnostic measures is very suspect because these can be severely 

affected by the masking and swamping effects. This inaccuracy can seriously 

affect their performance. 

In this paper, we proposed the forward sequential test for testing and detecting 

the multiple outliers. This was founded on a robust estimate of scale. 

In principle, the forward sequential test set up a natural simple approach for 

identifying the multiple outliers. However, if the forward sequential test is founded 

on the resulting from the least squares estimate, it can be seriously affected by 

the masking and swamping effects. On the other hand, if the forward sequential 

test is founded on a robust estimate of scale, like the test proposed in this paper, 

the problem for the masking and swamping effects can be overcome.

We proved that the proposed forward sequential test was not affected by the 

masking and swamping effects through the Monte Carlo results and numerical 

examples. These suggest that the proposed test provides a conservative and fairly 

powerful method for the detection of the multiple outliers in linear regression. 
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